MyBooks.club
Все категории

Иосиф Шкловский - Звезды: их рождение, жизнь и смерть

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Иосиф Шкловский - Звезды: их рождение, жизнь и смерть. Жанр: Физика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Звезды: их рождение, жизнь и смерть
Издательство:
-
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
193
Читать онлайн
Иосиф Шкловский - Звезды: их рождение, жизнь и смерть

Иосиф Шкловский - Звезды: их рождение, жизнь и смерть краткое содержание

Иосиф Шкловский - Звезды: их рождение, жизнь и смерть - описание и краткое содержание, автор Иосиф Шкловский, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга посвящена центральной проблеме астрономии — физике звезд. Заключительный этап звездной эволюции представляет особенно большой интерес, так как он имеет прямое отношение к таким интереснейшим объектам современной астрономии, как пульсары, рентгеновские звезды и черные дыры. Проблемы, связанные с этими объектами, пока далеки от решения. Поэтому автор стремился осветить фактическое состояние вопроса, давая лишь общее представление о существующих: теориях и гипотезах. В книге рассматривается также проблема образования звезд. Книга рассчитана на широкий круг лиц со средним образованием. Специальный интерес она представляет для студентов, лекторов, преподавателей, специалистов в области смежных наук.

Звезды: их рождение, жизнь и смерть читать онлайн бесплатно

Звезды: их рождение, жизнь и смерть - читать книгу онлайн бесплатно, автор Иосиф Шкловский

Для оценки создавшейся ситуации положим, как это делалось в § 6, M/R3. Тогда при релятивистском вырождении P M4/3/R4, а сила, противодействующая гравитации и равная перепаду давления,

Между тем сила гравитации равна GM/R2 M2/R5. Мы видим, что обе силы — гравитация и перепад давления — зависят от размеров звезды одинаковым образом: как R-5, и по-разному зависят от массы. Следовательно, должно существовать некоторое, совершенно определенное значение массы звезды, при котором обе силы уравновешиваются. Если же масса превышает некоторое критическое значение, то сила гравитации всегда будет преобладать над силой, обусловленной перепадом давления, и звезда катастрофически сожмется.

Допустим теперь, что масса меньше критической. Тогда сила, обусловленная давлением, будет больше гравитационной, следовательно, звезда начнет расширяться. В процессе расширения релятивистское вырождение сменится обычным «нерелятивистским» вырождением. В этом случае из уравнения состояния P 5/3 следует, что P/R M5/3/R6, т. е. зависимость силы, противодействующей гравитации, от R будет более сильной. Поэтому при некотором значении радиуса расширение звезды прекратится.

Этот качественный анализ иллюстрирует, с одной стороны, необходимость существования зависимости масса — радиус для белых карликов и ее характер (т. е. то, что радиус тем меньше, чем больше масса), а, с другой стороны, обосновывает существование предельной массы, что является следствием с неизбежностью наступающего релятивистского вырождения. До каких пор могут сжиматься звезды с массой, большей, чем 1,2 солнечной массы? Эта увлекательная, ставшая в последние годы весьма актуальной, проблема будет обсуждаться в § 24.

Вещество недр белых карликов отличается высокой прозрачностью и теплопроводностью. Хорошая прозрачность этого вещества опять-таки объясняется принципом Паули. Ведь поглощение света в веществе связано с изменением состояния электронов, обусловленном их переходами с одной орбиты на другую. Но если подавляющее большинство «орбит» (или «траекторий») в вырожденном газе «занято», то такие переходы весьма затруднены. Только очень немногие, особенно быстрые электроны в плазме белого карлика могут поглощать кванты излучения. Теплопроводность вырожденного газа велика — тому примером служат обыкновенные металлы. По причине очень высоких прозрачности и теплопроводности в веществе белого карлика не могут возникать большие перепады температуры. Почти весь перепад температуры, если двигаться от поверхности белого карлика к его центру, происходит в очень тонком, наружном слое вещества, который находится в невырожденном состоянии. В этом слое, толщина которого порядка 1% от радиуса, температура возрастает от нескольких тысяч кельвинов на поверхности примерно до десяти миллионов кельвинов, а затем вплоть до центра звезды почти не меняется.


Рис. 10.2: Эмпирическая зависимость светимости белых карликов от их температуры.

Белые карлики хотя и слабо, но все-таки излучают. Что является источником энергии этого излучения? Как уже подчеркивалось выше, водорода, основного ядерного горючего, в недрах белых карликов практически нет. Он почти весь выгорел на стадиях эволюции звезды, предшествовавших стадии белого карлика. Но, с другой стороны, спектроскопические наблюдения с очевидностью указывают на то, что в самых наружных слоях белых карликов водород имеется. Он либо не успел выгореть, либо (что более вероятно) попал туда из межзвездной среды. Не исключено, что источником энергии белых карликов могут быть водородные ядерные реакции, происходящие в очень тонком сферическом слое на границе плотного вырожденного вещества их недр и атмосферы. Кроме того, белые карлики могут поддерживать довольно высокую температуру своей поверхности путем обычной теплопроводности. Это означает, что не имеющие источников энергии белые карлики остывают, излучая за счет запасов своего тепла. А эти запасы весьма солидны. Так как движения электронов в веществе белых карликов обусловлены явлением вырождения, запас тепла в их недрах содержится в ядрах и ионизованных атомах. Полагая, что вещество белых карликов состоит в основном из гелия (атомный вес равен 4), легко найти количество тепловой энергии, содержащейся в белом карлике:

(10.5)

где mH — масса атома водорода, k — постоянная Больцмана. Время охлаждения белого карлика можно оценить, поделив E T на его светимость L. Оно оказывается порядка нескольких сотен миллионов лет.

На рис. 10.2 для ряда белых карликов приведена эмпирическая зависимость светимости от поверхностной температуры. Прямые линии суть геометрические места постоянных радиусов. Последние выражены в долях солнечного радиуса. Похоже на то, что эмпирические точки хорошо укладываются вдоль этих прямых. Это означает, что наблюдаемые белые карлики находятся на разных стадиях остывания.

В последние годы для десятка белых карликов было обнаружено сильное расщепление спектральных линий поглощения, обусловленное эффектом Зеемана. Из величины расщепления следует, что напряженность магнитного поля на поверхности этих звезд достигает огромного значения порядка десяти миллионов эрстед (Э). Столь большое значение магнитного поля, по-видимому, объясняется условиями образования белых карликов. Например, если предположить, что без существенной потери массы звезда сжимается, можно ожидать, что магнитный поток (т. е. произведение площади поверхности звезды на напряженность магнитного поля) сохраняет свое значение. Отсюда следует, что напряженность магнитного поля по мере сжатия звезды будет расти обратно пропорционально квадрату ее радиуса. Следовательно, она может вырасти в сотни тысяч раз. Этот механизм увеличения магнитного поля особенно важен для нейтронных звезд, о чем будет идти речь в § 22[ 29 ]. Интересно отметить, что большинство белых карликов не имеет поля более сильного, чем несколько тысяч эрстед. Таким образом, «намагниченные» белые карлики образуют особую группу среди звезд этого типа.

Глава 11 Модели звезд

В § 6 мы получили основные характеристики звездных недр (температура, плотность, давление), используя метод грубых оценок величин, входящих в уравнения, описывающие состояния равновесия звезд. Хотя эти оценки дают правильное представление о физических условиях в центральных областях звезд, они, конечно, совершенно недостаточны для понимания сходства и различия между разными звездами. Например, для решения важного вопроса, какая именно ядерная реакция (протон-протонная или углеродно-азотная) ответственна за излучение той или иной конкретной звезды, необходимо более совершенное знание условий в ее недрах. Наконец, остается пока не рассмотренной основная задача: каков физический смысл диаграммы Герцшпрунга — Рессела? Эта задача, как мы увидим ниже, теснейшим образом связана с проблемой эволюции звезд. Хотя запасы ядерной энергии в недрах звезд очень велики, все же их нельзя считать неисчерпаемыми. Рано или поздно (в зависимости от массы звезды) они подойдут к концу. Что будет при этом происходить со звездой? Как она будет менять свои свойства?

Чтобы понять связь между разными звездами и причины наблюдаемых различий между ними, надо хорошо знать мгновенное состояние разных звезд, как бы «моментальную фотографию» структуры их недр. Точно так же как реальные физические процессы можно представить как последовательность «квазистатических» состояний, очень медленный процесс эволюции звезды (обусловленный истощением запасов ее ядерного горючего) можно представить как последовательность ее равновесных конфигураций. Такие конфигурации, получаемые теоретическим, расчетным путем, носят название «звездных моделей».

Под «звездной моделью» понимается совокупность таблиц (или графиков), дающих «идеализированное» распределение плотности, температуры, давления, химического состава вещества звезды для разных глубин, выраженных в долях ее радиуса. Следует подчеркнуть, что такая модель отнюдь не тождественна реальной звезде. Все же хорошо рассчитанная модель, правильно учитывающая основные физические законы, определяющие структуру звезды, может (и должна!) давать в основном верное представление о свойствах вещества звездных недр. Было бы ошибочно считать, что расчет звездных моделей содержит в себе элемент произвола. Наоборот, он непрерывно и жестко контролируется в процессе самих вычислений. И, наконец, он после своего завершения должен находиться в полном согласии с наблюдаемыми свойствами «моделируемых» звезд. Например, если речь идет о расчете модели звезды главной последовательности, у рассчитанной модели должно выполняться соотношение «масса — светимость».


Иосиф Шкловский читать все книги автора по порядку

Иосиф Шкловский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Звезды: их рождение, жизнь и смерть отзывы

Отзывы читателей о книге Звезды: их рождение, жизнь и смерть, автор: Иосиф Шкловский. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.