Это соотношение известно как закон Гука.
Удлинение бруска Dl зависит и от его длины. Это можно продемонстрировать следующими рассуждениями. Если мы скрепим вместе два одинаковых бруска конец к концу, то на каждый будет действовать одна и та же сила и каждый из них удлинится на Dl. Таким образом, удлинение бруска длиной 2l будет в два раза больше удлинения бруска того же поперечного сечения, но длиной l. Чтобы получить величину, полнее характеризующую сам материал и менее зависящую от формы образца, будем оперировать отношением Dl/l (удлинение к первоначальной длине). Это отношение пропорционально силе, но не зависит от l:
F~Dl/l(38.2)
Сила F зависит также от площади сечения бруска. Предположим, что мы поставили два бруска бок о бок. Тогда для данного удлинения Dl мы должны приложить силу F к каждому бруску, или для комбинации двух брусков требуется вдвое большая сила. При данной величине растяжения сила должна быть пропорциональна площади поперечного сечения бруска А. Чтобы получить закон, в котором коэффициент пропорциональности не зависит от размеров тела, мы для прямоугольного бруска будем писать закон Гука в виде
F=YA(Dl/l) (38.3)
Постоянная Y определяется только свойствами природы материала; ее называют модулем Юнга. (Обычно модуль Юнга обозначается буквой Е, но эту букву мы уже использовали для электрического поля, для энергии и для э. д. с., так что теперь лучше взять другую.)
Силу, действующую на единичной площади, называют напряжением, а удлинение участка, отнесенное к его длине, т. е. относительное удлинение называют деформацией. Уравнение (38.3) можно переписать следующим образом;
F/A =YXDl/l. (38.4)
Напряжение=(Модуль Юнга)X(Деформация).
При растяжении, подчиняющемуся закону Гука, возникает еще одно осложнение: если брусок материала растягивается в одном направлении, то под прямым углом к растяжению он сжимается. Уменьшение толщины пропорционально самой толщине w и еще отношению Dl/l. Относительное боковое сжатие одинаково как для ширины, так и для его высоты и обычно записывается в виде
где постоянная s характеризует новое свойство материала и называется отношением Пуассона. Это число положительное до знаку, по величине меньше 1/2. (То, что постоянная о в общем случае должна быть положительной, «разумно», но ниоткуда не следует, что она должна быть такой.)
Две константы Y и s полностью определяют упругие свойства однородного изотропного (т. е. некристаллического) материала. В кристаллическом материале растяжение и сокращение в разных направлениях может быть различным, поэтому и упругих постоянных может быть гораздо больше. Временно мы ограничим наши обсуждения однородными изотропными материалами, свойства которых могут быть описаны постоянными s и Y. Как обычно, существует множество способов описания свойств.
Некоторым, например, нравится описывать упругие свойства материалов другими постоянными. Но таких постоянных всегда берется две, и они могут быть связаны с нашими s и Y.
Последний общий закон, который нам нужен,— это принцип суперпозиции. Поскольку оба закона (38.4) и (38.5) линейны в отношении сил и перемещений, то принцип суперпозиция будет работать. Если при одном наборе сил вы получаете некоторое дополнительное перемещение, то результирующее перемещение будет суммой перемещений, которые бы получились при независимом действии этих наборов сил.
Теперь мы имеем все необходимые общие принципы: принцип суперпозиции и уравнения (38.4) и (38.5), т. е. все, что нужно для описания упругости. Впрочем, с таким же правом можно было заявить: у нас есть законы Ньютона, и это все, что нужно для механики. Или, задавшись уравнениями Максвелла, мы имеем все необходимое для описания электричества. Оно, конечно, так; из этих принципов вы действительно можете получить почти все, ибо ваши теперешние математические возможности позволяют вам продвинуться достаточно далеко. Но мы все же рассмотрим лишь некоторые специальные приложения.
§ 2. Однородная деформация
В качестве первого примера посмотрим, что происходит с прямоугольным бруском при однородном гидростатическом сжатии. Давайте поместим брусок в резервуар с водой. При этом возникнет сила, действующая на каждую грань бруска и пропорциональная его площади (фиг. 38.2).
Фиг. 38.2. Брусок под действием равномерного гидростатического давления.
Поскольку гидростатическое давление однородно, то напряжение (сила на единичную площадь) на каждой грани бруска будет одним и тем же. Прежде всего найдем изменение длины бруска. Его можно рассматривать как сумму изменений длин, которые происходили бы в трех независимых задачах, изображенных на фиг. 38.3.
Фиг. 38.3. Гидростатическое давление равно суперпозиции трех сжатий.
Задача 1. Если мы приложим к концам бруска давление р, то деформация сжатия будет отрицательна и равна p/Y:
Задача 2. Если мы надавим на горизонтальные грани бруска, то деформация по высоте будет равна -p/Y, а соответствующая деформация в боковом направлении будет +sp/Y. Мы получаем
Задача 3. Если мы приложим к сторонам бруска давление р, то деформация давления снова будет равна p/Y, но теперь нам нужно определить деформацию длины. Для этого боковую деформацию нужно умножить на -s. Боковая деформация равна
так что
Комбинируя результаты этих трех задач, т. е. записывая Dl как dl1+Dl2+Dl3, получаем
Задача, разумеется, симметрична во всех трех направлениях, поэтому
Интересно также найти изменение объема при гидростатическом давлении. Поскольку V=lwh, то для малых перемещений можно записать
Воспользовавшись (38.6) и (38.7), мы имеем
Имеются любители называть DV/V объемной деформацией и писать
Объемное напряжение р (гидростатическое давление) пропорционально вызванной им объемной деформации — снова закон Гука. Коэффициент К называется объемным модулем и связан с другими постоянными выражением
Поскольку коэффициент К представляет некоторый практический интерес, то во многих справочниках вместо Y и s приводятся У и К. Но если вам нужно знать а, то вы всегда можете получить это значение из формулы (38.9). Из этой формулы видно также, что коэффициент Пуассона s должен быть меньше 1/2. Если бы это было не так, то объемный модуль К был бы отрицательным и материал при увеличении давления расширялся бы. Это позволило бы добывать механическую энергию из любого кубика, т. е. это означало бы, что кубик находится в неустойчивом равновесии. Если бы он начал расширяться, то расширение продолжалось бы само по себе с высвобождением энергии.
Посмотрим, что получится, если мы приложим к чему-то «косое» напряжение. Под косым, или скалывающим, напряжением мы подразумеваем такое воздействие, как показано на фиг. 38.4.
Фиг. 38.4. Однородный сдвиг.
В качестве предварительной задачи посмотрим, какова будет деформация кубика под действием сил, показанных на фиг. 38.5.
Фиг. 38.5. Действие сжимающих сил, давящих на вершину и основание, и равных им растягивающих сил с двух сторон.
Снова можно разделить эту задачу на две: вертикальное давление и горизонтальное растяжение. Обозначая через А площадь грани кубика, мы получаем для изменения горизонтальной длины
Изменение же высоты по вертикали равно просто тому же выражению с обратным знаком.
Предположим теперь, что мы имеем тот же самый кубик, и подвергнем его действию сдвиговых сил, показанных на фиг. 38.6, а.
Фиг. 38.6. Две пары сил сдвига (а) создают то же самое напряжение, что и сжимающие = растягивающие силы (б).
Заметим теперь, что все силы должны быть равными, ибо на тело не должен действовать никакой момент сил и оно должно находиться в равновесии. (Подобные силы должны действовать также и в случае, изображенном на фиг. 38.4, поскольку кубик находится в равновесии. Они обеспечиваются тем, что кубик «приклеен» к столу.) При таких условиях говорят, что кубик находится в состоянии чистого сдвига. Но обратите внимание, что если мы разрежем кубик плоскостями под углом 45°, скажем, вдоль диагонали А на фиг. 38.6, а, то полная сила, действующая в этой плоскости, нормальна к ней и равна Ц2G.Площадь, на которой действует эта сила, равна Ц2A;следовательно, напряжение, нормальное к этой плоскости, будет просто G/A. Точно так же если взять плоскость, наклоненную под углом 45° в другую сторону, т. е. по диагонали В, то мы увидим, что на ней действует нормальное сдавливающее напряжение, равное -G/A. Из этого ясно, что напряжение при «чистом сжатии» эквивалентно комбинации растягивающего и сжимающего напряжений, направленных под прямым углом друг к другу и под углом 45° к первоначальным граням кубика. Внутренние напряжения и деформации будут такими же, как и в большом кубике материала под действием сил, показанных на фиг. 38.6, б. Но эту задачу мы уже решили. Изменение длины диагонали задается уравнением (38.10):