Такова в самых примитивных чертах неевклидова геометрия. Заканчивая беседу о ней, я должен сообщить вам нечто важное и несколько обескураживающее.
Как вы наверняка догадываетесь, описанные в этой главе геометрические странности имеют непосредственное отношение к общей теории относительности, к тяготению, к инерции, в конечном счете — ко все еще не разгаданной нами до .конца загадке падения тел, действию тяжести через пустоту.
Это действительно так. Но связь, к сожалению, далеко не столь проста, как хотелось бы любителям легкого бегства от удивлений. Приготовьтесь к разочарованию. Все, буквально все только что изложенные геометрические рассуждения и примеры в мире Эйнштейна не имеют ни грана физического смысла. Ибо с самого начала этой главы мы с вами разрешили себе непозволительную идеализацию истинного положения вещей — признали возможность мгновенного измерения расстояний. Отсюда выросла физическая небылица: пространство, не зависимое от времени.
На самом деле ничего мгновенного в природе не бывает. Измерения расстояний кроме линеек требуют еще и часов. И строгого соблюдения не только геометрических, но и чисто физических правил, говорящих, в частности, о том, что пространство вообще не может существовать вне времени. В реальном мире пространство и время неразделимы.
Как велики последствия этого, вы скоро поймете.
О пользе чистоты
В начале двадцать первой главы я пропел панегирик геометрии. Потом долго втолковывал вам всякие странные геометрические идеи, а затем объявил, что они лишены физического смысла. Получилось вроде бы не очень последовательно. Зачем же понадобились эти разговоры?
Дело в том, что сама по себе геометрия, как и любая чисто математическая наука, слишком абстрактна, слишком узка, чтобы служить надежным зеркалом природы. За гармонией линий, за сплетением идеальных фигур, за сложной очередью посылок и следствий она склонна не замечать настоящего мира. С давних пор создавалась эта рафинированная, очищенная от реальности, всеядная, применимая к чему угодно символическая логика. Чистой математике все равно, что считать. Лишь бы считать.
Шли века, и геометрия развивалась двумя путями. С одной стороны, теснее и теснее сближалась с практикой, училась виртуозности в решении практических задач. Но одновременно все дальше уходила от действительности, все глубже погружалась в мир математических грез. Именно на этом пути она отыскала неевклидовы пространства.
Я думаю, так будет всегда. Несколько утрируя и упрощая, можно сказать: академически-изысканный геометр-теоретик никогда не заинтересуется вплотную физической подоплекой своих построений. Главное для него — чтобы открывались новые и новые логические шаги, чтобы неизменно соблюдалась твердокаменная строгость, ветвилось дерево безупречно точных, растущих друг из друга абстракций.
Хорошо это или плохо? Великолепно! Ведь это полное освобождение математической мысли, широчайший простор для логики, труднейшая тренировка и строжайший экзамен человеческому уму.
Но ведь логична не только математика. Природа тоже логична. Во всем, всегда и весьма строго логична. Вот почему поиски «чистых» математиков просто не могут быть бесполезными для естествознания. Рано или поздно абстрактнейшие математические упражнения становятся источником находок, драгоценных для естествоиспытателей. Стало законом: любая новая физическая теория опирается на заранее открытый, предварительно подготовленный математический аппарат. «Чистые» математики стараются не зря.
Это в полной мере касается общей теории относительности. Ее фундамент — дополненное, одухотворенное физикой учение о неевклидовых искривленных пространствах, то самое, что было основано гением математиков за девяносто лет (!) до первых догадок Эйнштейна.
Эксперимент Гаусса
Полезно проследить, как от физической небылицы неевклидова геометрия поднялась до почетной персоны, олицетворяющей остов реального мира.
История эта началась в середине прошлого века, когда идеи о кривизне пространства стали постепенно проникать в научное сознание. Одновременно с Лобачевским их проводником был талантливый венгр Янош Больяй, затем — немец Георг Риман. Маститые коллеги скептически, а то и иронически относились к их трудам. Кривизна прямейших линий представлялась совершенно беспочвенной фантазией, фикцией, измышлением, чрезмерно абстрактным даже для чистой математики.
Все-таки семя было брошено. И начало давать ростки. Мало-помалу привыкая к парадоксальной геометрической гипотезе, ученые закономерно пришли к мысли: а не проверить ли ее? Не откроется ли в большом то, что незаметно в малом?
Так родился замысел физико-геометрического эксперимента вроде того, о котором я уже упоминал в предыдущей главе, во время популяризаторского галопа в неевклидовом пространстве: измерить сумму углов какого-нибудь гигантского треугольника.
Карл Фридрих Гаусс, знаменитый немецкий математик, предпринял ради этого обширную геодезическую экспедицию. Световым лучом были связаны три горы — Брокен, Высокий Хаген и Инзельберг. Горные вершины стали геометрическими вершинами треугольника. Тщательные измерения его углов дали в сумме традиционные евклидовы два прямых — как и на классной доске. Эксперимент утвердил Евклида в масштабах Тирольских Альп. И как будто опроверг идею пространственной кривизны в тех же масштабах и в пределах точности угломерных инструментов.
Можно было думать, что если кривизна пространства и существует, то обнаружить ее удастся либо более точным измерением углов, либо в треугольнике еще более крупного масштаба — скажем, астрономического, с вершинами, лежащими на каких-нибудь звездах.
Так считалось много десятилетий, пока в умах ученых царила физика Ньютона с ее вечно неизменным абсолютным пространством, с возможностью (хотя бы принципиальной) сколь угодно быстрых путешествий и измерений.
А потом явился Эйнштейн. Мгновенные путешествия и измерения получили отставку. И выяснилось, что эксперимент Гаусса некорректен, несовместим с физикой мира. Его нельзя исполнить даже мысленно[16].
Не забывать о времени!
Приговор был таков: в малых масштабах, где мир бесспорно евклидов (это видно во всех школьных тетрадках), мгновенное творение и измерение светового треугольника не даст ничего нового — там и кривизны практически нет. А в крупных, астрономических масштабах ни Гаусс, ни потомки его, вооруженные новейшей техникой, просто не поспели бы сделать желаемых измерений.
Пока световой луч, «вычерчивая» гигантский космический треугольник, бежал бы от звезды к звезде, он вместе с тем «поднимался» бы в будущее. Это сделало бы невозможным возврат в точку старта — ведь вспять во времени двигаться запрещено во имя исполнения принципа причинности.
Но может быть, сама точка старта, равномерно «поднявшись» в будущее, совпала бы с финишем луча, обежавшего треугольник? В частном случае, при неизменно равномерном времени, это допустимо. Но в общем случае это невозможно, потому что, как объяснялось в девятнадцатой и двадцатой главах, вместе с деформацией пространства происходит деформация времени. Точка старта, двигаясь в будущее, могла пережить изменения темпа времени и встретиться с вернувшимся лучом совсем не там, где произошла бы эта встреча, будь время неизменно равномерным.
Строго говоря, в крупных, астрономических масштабах вообще невозможно построить пространственный треугольник. Он распадется при «черчении». И, значит, невозможно измерить его углы. И, следовательно, невозможно определить кривизну пространства.
Такова же причина объявленной нефизичности всех примеров двадцать первой главы.
Нет в эйнштейновской физике «независимого», «самостоятельного» пространства.
Тут снова отчетливо проступает существеннейшая черта идей Эйнштейна: неразделимость пространства и времени, их тесное единство. Только в специальных, нарочно придуманных случаях могут быть исключения — скажем, прямое время в искривленном пространстве (один из таких примеров — эйнштейновская космологическая модель Вселенной-—будет разобран в двадцать шестой главе). А как правило, деформация пространства обязательно сопровождается деформацией времени. Из этого и надо исходить при физическом осмыслении идей неевклидовой геометрии.
Короче говоря, раз уж есть где-то в мире кривизна, то она присуща сразу и пространству и времени.
Эволюция аквариумов
Снова коротенькое воспоминание. Прочтите его не спеша и хорошенько прочувствуйте.
Много страниц назад, рассуждая о воззрениях Ньютона, я уподобил классическую систему пространственного отсчета гигантскому жесткому аквариуму. Он был незыблемо неподвижен, ибо покоился на неподвижных звездах. И относительно его дна и стенок можно было мгновенно отмеривать расстояния в абсолютном евклидовом пространстве. На аквариуме висели нематериальные звездные часы, отсчитывающие всеобщее, везде одинаковое, равномерное математическое время. Это был божественный остов ньютоновского мира.