MyBooks.club
Все категории

Вольдемар Смилга - Очевидное? Нет, еще неизведанное…

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Вольдемар Смилга - Очевидное? Нет, еще неизведанное…. Жанр: Физика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Очевидное? Нет, еще неизведанное…
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
1 340
Читать онлайн
Вольдемар Смилга - Очевидное? Нет, еще неизведанное…

Вольдемар Смилга - Очевидное? Нет, еще неизведанное… краткое содержание

Вольдемар Смилга - Очевидное? Нет, еще неизведанное… - описание и краткое содержание, автор Вольдемар Смилга, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Эффектное название, возможно, и интригует, но, уж конечно, ничего не объясняет. А в этой книге довольно серьезно рассказывается о том, чего достигла физика со времен Галилея до Эйнштейна, о явлениях древних, как мир, и, по-видимому, всем знакомых, а в конечном счете — о специальной теории относительности.

Очевидное? Нет, еще неизведанное… читать онлайн бесплатно

Очевидное? Нет, еще неизведанное… - читать книгу онлайн бесплатно, автор Вольдемар Смилга

Из инвариантности интервала немедленно следуют преобразования Лоренца — формулы, позволяющие перейти от одной инерциальной системы отсчета к другой.

Это тоже математика. Опустим вывод преобразования Лоренца и даже скрепя сердце промолчим об удивительно изящной математической трактовке этих преобразований, принадлежащей Минковскому. В конце концов все это относится к работе мельницы, а нам с лихвой хватит попытки разобраться в основных физических выводах теории. Посему все формулы будем принимать на веру.

1. Рассмотрим две инерциальные системы отсчета K и K1, оси которых по направлениям совпадают.



Пусть относительная скорость движения этих систем v направлена вдоль осей x и x1. Тогда, зная время и координаты любого события в одной системе отсчета, можем найти время и координаты этого же события в другой системе. А именно:

Эти формулы и определяют преобразование Лоренца.

Как видите, написаны формулы перехода от штрихованной системы к нештрихованной[69].

Из рисунка видно, что рассматривается случай, когда скорость системы K1 в системе K равна +v.

Теперь, зная координаты и время в системе K1 и использовав наши формулы, сразу можем найти соответствующие координаты и время в системе K.

Чтобы проделать обратный переход, нужно разрешить наши уравнения относительно x1 и t1 (как говорится, «уединить» x1 и t1). Это очень легко сделать чисто формально, но еще проще вспомнить, что ввиду равноправия инерциальных систем формулы перехода от K к K1 и от K1 к K должны иметь тождественный вид.

Учитывая, что скорость движения K относительно K1 равна — v, сразу напишем:

Мы рассмотрели сравнительно простой случай, когда относительная скорость движения систем K к K1 совпадает по направлению с осями x и x1.

В общем случае формулы перехода, естественно, усложняются, но все принципиальные отличия теории Эйнштейна от классической физики полностью выявлены и в частном случае.

Сразу видно, как существенно отличаются преобразования Лоренца от аналогичного преобразования Галилея в классической механике. Однако, кроме различия, есть и значительное сходство.

По этому поводу можно высказать совершенно общее утверждение. Заранее ясно, что в теории Эйнштейна как предельный случай должна заключаться классическая механика. Механика Ньютона многократно оправдывалась при проверке на опыте, и никакая разумная новая теория не может просто ее отбросить. От подобных неприятностей классическую механику метод принципов Ньютона страхует навечно.

Предельный переход к механике Ньютона. Важное замечание общего характера иллюстрируется конкретным примером.

Как бы ни изменились принципиальные положения, что бы ни оказалось в дальнейшем, но когда скорости тел малы, любая теория должна давать те же или, точнее, почти те же результаты, что и механика Ньютона. Как приближение к истине законы Ньютона останутся навсегда.



Все, что сказано сейчас о механике Ньютона, можно дословно повторить по отношению к специальной теории относительности. Дальнейшее развитие науки может внести любые изменения. Может произойти все что угодно, но хотя бы как приближение к истине теория Эйнштейна останется в науке навсегда.

Вернемся, однако, к конкретному вопросу. Как можно увидеть, что теория Эйнштейна включает в себя механику Ньютона? В этом легко, например, убедиться при анализе любого вывода теории. Ограничимся только одним примером. Когда v/c << 1 можно пренебречь членами (v/c)2 и (v2/c2) и формулы преобразования Лоренца переходят в хорошо известные классические формулы преобразования Галилея:

x = x1 + vt1;

y = y1;

z = z1; t = t1.

С другой стороны, преобразование Лоренца переходит в преобразование Галилея, если устремить с к бесконечности. Здесь физическое содержание тоже очень прозрачно. Бесконечная скорость распространения сигналов — это гипотеза, как помните, лежит в основе классической физики.

А теперь разрешите совсем маленькую сенсацию.

По существу, наша работа уже почти закончена. Вся специальная теория относительности непосредственно вытекает из двух постулатов, которые мы разобрали в предыдущих главах.

Самое основное изменение, которое вносится в классическую физику, — это изменение понятия времени, или, что то же, изменение понятия одновременности. Сей вопрос также рассмотрен. Мы не касались только одного вывода совершенно принципиального характера — связи между массой и энергией. Но это потом.

Так как математическая часть теории основана целиком на преобразовании Лоренца, которое нами рассмотрено, то все остальное, в том числе сокращение длины и изменение времени, не более чем простые следствия.

Один из наиболее неожиданных выводов релятивистской теории для человека, воспитанного на механике Ньютона, — закон сложения скоростей.

Итак, перейдем к рассмотрению частностей с приятным сознанием, что основы уже ясны. Во-первых — закон сложения скоростей.

Постановка вопроса очевидна.

Пусть в инерциальной системе К со скоростью v1 движется некое тело. Пусть далее другое тело движется относительно первого со скоростью v2. Требуется определить скорость второго тела относительно системы K.

Доставив себе удовольствие строгой и общей формулировкой проблемы, вернемся к железной дороге.

Поезд идет по полотну дороги со скоростью v1 относительно полотна. (Конечно, его скорость может быть близка к скорости света.) Некто в поезде по не интересующей нас причине стреляет из ружья, и скорость пули — относительно поезда — v2. Требуется определить скорость пули относительно полотна дороги. (Конечно, и скорость пули v2 тоже может быть близка к скорости света.) Мы ограничимся только тем частным случаем, когда скорости v1 и v2 направлены по одной прямой, но все характерные черты теории относительности великолепно видны и в этом случае.

В классической механике суммарная скорость определялась предельно простым выражением vсум = v1 ± v2 (знак + в том случае, когда стреляют по ходу поезда, и знак –, когда против хода).

По Эйнштейну, закон для определения суммарной скорости другой:

Как видно, если v1 << c и v2 << c, формула Эйнштейна переходит в классическую. (В этом случае можно спокойно пренебречь вторым членом знаменателя по сравнению с единицей.) Если же скорости v1 и v2 сравнимы со скоростью света, тогда формула Эйнштейна становится совершенно отличной от классической.

Лучше всего в этом можно убедиться, положив одну из скоростей (например, v2) равной скорости света. Если помните, мы уже упоминали об этой задаче, обсуждая в XI главе, какова будет относительно полотна дороги скорость светового луча, посланного источником, находящимся на поезде. Легко видеть, что независимо от v1 абсолютная величина суммарной скорости снова равна скорости света.

Теперь можно разбить наши рассуждения в XI главе. Как помните, там, защищая баллистическую гипотезу, мы принимали как самоочевидный факт классическую формулу сложения скоростей.

Сейчас стоит прочесть еще раз страницу 246.

И вот, как оказывается, именно это и неправильно.

Фронт световой волны, идущей из прожектора поезда, распространяется со скоростью с относительно поезда. Но относительно наблюдателя на земле он распространяется не со скоростью (vпоезда + c), а снова с той же скоростью c.

Для нашего воображения, воспитанного на классической механике, это удивительно. Удивительно, но тем не менее правильно.

Более того, относительная скорость двух фотонов, несущихся навстречу друг другу со скоростью света, снова равна c, а не 2c, как в классической физике[70].


Вольдемар Смилга читать все книги автора по порядку

Вольдемар Смилга - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Очевидное? Нет, еще неизведанное… отзывы

Отзывы читателей о книге Очевидное? Нет, еще неизведанное…, автор: Вольдемар Смилга. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.