MyBooks.club
Все категории

Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир. Жанр: Физика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Абсолютный минимум. Как квантовая теория объясняет наш мир
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
306
Читать онлайн
Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир краткое содержание

Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир - описание и краткое содержание, автор Майкл Файер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Абсолютный минимум. Как квантовая теория объясняет наш мир читать онлайн бесплатно

Абсолютный минимум. Как квантовая теория объясняет наш мир - читать книгу онлайн бесплатно, автор Майкл Файер

Молекулы неона не существует

Диаграмму энергетических уровней МО, представленную на рис. 13.6, можно использовать для рассмотрения гипотетической двухатомной молекулы неона Ne2. В Периодической таблице неон занимает следующее место справа от фтора. На рис. 13.7 показан результат расселения 20 электронов от двух атомов неона по диаграмме энергетических уровней МО. Первые 18 электронов располагаются так же, как и в молекуле F2. Однако есть ещё два электрона, и они должны занять разрыхляющую МО σz*. Таким образом, для каждой пары электронов на связывающих МО имеется пара электронов на разрыхляющих МО. В результате связи не возникает. Молекулы Ne2 не существует. Другие благородные газы также не образуют гомонуклеарных двухатомных молекул. На примере молекулы Ne2 становится понятно, почему это так. Атом благородного газа имеет замкнутую оболочку. Два атома благородных газов имеют ровно столько электронов, сколько необходимо, чтобы заполнить все связывающие и разрыхляющие МО. Поэтому в совокупности связей не образуется.

Молекула кислорода: правило Хунда имеет значение

На одну позицию левее фтора в Периодической таблице находится кислород. Молекула O2 является важным примером, на котором можно проиллюстрировать пару новых идей. На рис. 13.8 представлена диаграмма энергетических уровней МО, заполненная шестнадцатью электронами O2, по восемь от каждого атома кислорода. Связывающие и разрыхляющие МО, образующиеся из 1s- и 2s-орбиталей, заполнены. Они не дают вклада в связывание. Имеется два электрона на связывающей МО σzb и ни одного на соответствующей разрыхляющей МО. Кроме того, имеется четыре электрона на двух связывающих π-МО, но только два электрона на разрыхляющих π-МО. В результате возникают одна σ-связь и одна π-связь. Кислород имеет связь порядка 2, то есть двойную связь. Как будет показано далее, двойная связь сильнее и короче одиночной связи.

Рис. 13.7. Диаграмма энергетических уровней МО для гипотетической молекулы Ne 2 . Два атома неона обладают двадцатью электронами. Получается одинаковое число связывающих и разрыхляющих электронов, так что связи не образуется. Молекулы Ne 2 не существует


Молекула O2 — это первый пример, в котором правило Хунда вступает в действие и играет важную роль. Обратите внимание: при заполнении энергетических уровней электронами два последних электрона имеют неспаренные спины. Возможность иметь неспаренные спины без нарушения принципа Паули появляется благодаря тому, что существует две разных разрыхляющих π-МО. Орбиталь πx* возникает за счёт бокового перекрытия двух атомных px-орбиталей (см. рис. 13.3), а орбиталь πy* появляется за счёт бокового перекрытия двух атомных py-орбиталей. Правило Хунда утверждает, что электроны будут занимать орбитали без спаривания, если это не противоречит принципу Паули и не требует подъёма на значительно более высокоэнергетическую орбиталь. Две обсуждаемые разрыхляющие МО имеют одинаковую энергию, так что правило Хунда вступает в игру.

Рис. 13.8.Диаграмма энергетических уровней МО для молекулы O2. Имеются одна пара σ-связывающих электронов и одна пара π-связывающих электронов. Молекула O2 имеет двойную связь. Обратите внимание на неспаренные электроны связывающей π-МО


Электрон обладает магнитным моментом. В некотором смысле он действует как крохотный магнитный брусок. У него есть северный и южный полюса. Термин «спин»{20} для квантового числа электрона пришёл из классической механики. В классической теории вращающийся пространственно распределённый заряд обладает магнитным моментом. Электрон — это волна амплитуды вероятности. Он имеет делокализованное распределение заряда. В результате у него есть магнитный момент, но этот факт не следует понимать как вращение в буквальном смысле. Это классическая идея. Дирак, которому мы обязаны концепцией абсолютного размера (см. главу 2), объединив квантовую теорию с теорией относительности Эйнштейна, показал, почему электрон обладает магнитным моментом. Электрон в действительности не вращается, но это название закрепилось. Магнитный момент электрона играет важную роль.

Когда спины двух электронов спарены, северный полюс одного крошечного магнита совпадает по направлению с южным полюсом другого. Магнитные свойства одного электрона компенсируют магнитные свойства другого. Однако в молекуле O2 два электрона не спарены. Их спины имеют одинаковое направление. В результате молекула O2 приобретает свойство, называемое парамагнетизмом. Она реагирует на магнит. Вода при температуре выше 100 °C находится в газообразном состоянии, но если охладить её до температуры ниже 100 °C, она превращается в жидкость. С кислородом происходит то же самое, но его требуется охлаждать гораздо сильнее. При комнатной температуре кислород является газом, но если очень сильно его охладить (ниже −183 °C), он переходит в жидкое состояние. Можно налить жидкий кислород в пробирку, подвешенную на нити. Если поднести к этой пробирке магнит, то он её притянет. Спины электронов (маленькие магнитные бруски) в молекулах O2 выстраиваются вдоль магнитного поля внешнего макроскопического магнита. Эти выстроившиеся крошечные магнитики, складываясь вместе, придают жидкому кислороду магнитные свойства, и пробирка притягивается к внешнему магниту.

Корректное предсказание парамагнитных свойств O2, сделанное на основе анализа диаграммы энергетических уровней МО, — это замечательный результат. Магнитный момент O2 — это сугубо квантовый эффект, и наше предсказание того, что O2 является парамагнетиком, появилось благодаря применению правила Хунда. Следуя определённым правилам, мы нарисовали линии, отвечающие энергетическим уровням. Затем, следуя другим правилам, мы разместили на этих линиях энергетических уровней стрелки, направленные вверх и вниз (расселили по ним электроны). На основе этих линий и стрелок мы смогли предсказать, что молекула кислорода является магнитной, хотя молекулы фтора и азота таковыми не являются.

Молекула азота

На рис. 13.9 представлена заполненная диаграмма энергетических уровней МО для азота N2. Атом азота находится в Периодической таблице непосредственно слева от кислорода. Обратите внимание, что есть перестановка в порядке следования связывающих МО, порождённых p-электронами. Подробные квантовомеханические вычисления позволяют получить порядок следования и значения энергетических уровней МО. У азота этот порядок иной, чем у O2 и F2. Атом азота имеет семь электронов, так что молекула N2 содержит 14 электронов. Как и в случае с F2 и O2, 1s- и 2s-электроны не участвуют в связывании, поскольку они заполняют как связывающие, так и разрыхляющие МО. На заполнение этих МО уходит восемь из 14 электронов. Остальные шесть электронов расселяются по трём связывающим МО — одной σ-МО и двум π-МО. На разрыхляющих π-МО и σ-МО, образованных pz-орбиталями, электронов нет. Таким образом, N2 имеет связь порядка 3, то есть тройную связь. Тройная связь сильнее и короче, чем двойная или одиночная. Обратите внимание, что в молекуле N2 нет неспаренных электронов. Она не является парамагнитной. При низкой температуре (ниже −196 °C) азот становится жидким. Однако сдвинуть пробирку с жидким азотом с помощью магнита не получится, поскольку у него нет неспаренных спинов.

Одиночные, двойные и тройные связи

В главе 11, обсуждая связывание на основе положения атома в Периодической таблице, мы воспользовались представлением о том, что атом стремится сформировать ковалентные связи таким образом, чтобы совместное использование электронов позволяло ему достичь конфигурации благородного газа. Для обсуждаемых здесь элементов второй строки Периодической таблицы — азота, кислорода и фтора — таким благородным газом является неон. Как уже говорилось, атом фтора, который на один электрон отстаёт от конфигурации атома неона, будет совместно с другим атомом использовать один электрон. Атом кислорода, на два элемента отстающий от конфигурации атома неона, будет использовать два электрона, а атом азота, которому до неона не хватает трёх электронов, будет совместно использовать три электрона.

Рис. 13.9.Диаграмма энергетических уровней МО для молекулы N2. Имеется одна дополнительная пара σ-связывающих электронов и две дополнительные пары π-связывающих электронов. N2 имеет тройную связь


Майкл Файер читать все книги автора по порядку

Майкл Файер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Абсолютный минимум. Как квантовая теория объясняет наш мир отзывы

Отзывы читателей о книге Абсолютный минимум. Как квантовая теория объясняет наш мир, автор: Майкл Файер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.