Поскольку имеется бесчисленное количество способов выбора осей Dи D', то существует бесконечно большое число возможных поляризаций, потенциально заключенных в начальном состоянии фотона, точно так же, как существуют различные значения энергии, потенциально содержащиеся в состоянии частицы, соответствующая волна которой не монохроматична. Конечно, в исключительных случаях можно точно предсказать результат воздействия николя на фотон: это будет тогда, когда начальное состояние является чистым состоянием в смысле направления поляризации, иными словами, когда падающая волна плоско поляризована вдоль Dи D'. Все это без труда переносится на случай, когда вместо плоского анализатора, подобного николю, используется круговой или эллиптический анализатор.
Следовательно, нельзя спросить о фотоне, связанном с какой-то световой волной: какова поляризация этого фотона?Этот вопрос не имеет смысла: на него не существует сколько-нибудь разумного ответа. Единственный вопрос, который можно задать, заключается в следующем: какова вероятность того, что эксперимент (проделанный с плоским анализатором) позволит нам приписать фотону поляризацию в данном направлении D(нормальном к направлению распространения)?Мы только что видели, как волновая теория дает нам ответ на этот вопрос, и этот ответ существенно опирается на возможность разложения волновой функции на две компоненты.
Паули, чтобы ввести спин электрона в волновую механику, считал необходимым точно так же приписать «КСИ»-волне две компоненты, не предполагая при этом, что эти две компоненты обязательно должны иметь смысл взаимно перпендикулярных компонент вектора, как в случае света. Точно так же, как нельзя говорить о плоской поляризации фотона, нельзя говорить и о направлении спина электрона. Можно лишь спросить о том, какова вероятность, что спин электрона имеет заданное направление.
Однако спин имеет направление и знак. Предполагалось также, что величина спина равна половине квантовой единицы момента количества движения, или h/4»пи». Поэтому Паули предположил, что для каждого направления D(которое не перпендикулярно направлению распространения, поскольку «КСИ»-волны не поперечны) спин может иметь два значения ±h/4»пи» «бета» зависимости от знака, который он имеет в данном направлении. Должна быть определенная вероятность обнаружить на опыте, что спин рассматриваемого электрона направлен вдоль Dи имеет величину +h/4»пи»; определенная вероятность, что эксперимент даст значение спина – h/4»пи» «бета» направлении D.
Паули по аналогии с поляризацией света предположил, что для каждого заданного направления Dволну можно разложить на две компоненты, интенсивности которых являются мерой вероятностей двух возможных величин ±h/4»пи» спина в направлении D. Конечно, если направление Dменяется, разложение «КСИ»-волны на две компоненты производится иным способом, точно так же, как для света разложение на две взаимно перпендикулярные компоненты производится различно в зависимости от того, какова система взаимно перпендикулярных осей. Паули выписал систему двух дифференциальных уравнений, которым должны удовлетворять две компоненты «КСИ»-волны для данного направления D. Он изучил также способ преобразования этой компоненты, когда направление Dменяется. При этом он заметил, что компоненты «КСИ»-волны преобразуются не как компоненты вектора. Перед нами первый пример применения в физике особого математического понятия. Действительно, «КСИ»-волна частицы со спином не попадает в общий класс тензоров, частным случаем которых, как известно, являются скаляры и векторы. Это математическое понятие совершенно нового типа впоследствии было хорошо изучено и получило название полу вектора, или спинора.
Мы не можем здесь подробно описывать формализм теории Паули, к тому же он не получил широкого применения, ибо вскоре был заменен теорией Дирака. Кроме того, теория Паули не релятивистская. Поэтому ее нельзя применить для предсказания тонкой структуры в смысле, указанном ранее Зоммерфельдом. Однако соображения Паули представляют огромнейший интерес. Они показывают, как можно ввести спин в волновую механику, рассмотрев вероятности двух возможных знаков спина для данного направления и введя вместо однокомпонентной «КСИ»-функции «КСИ»-функцию с несколькими компонентами. И Дираку в его блестящей работе удалось довести до конца эту первую черновую попытку.
Конечно, Дирак руководствовался идеями Паули, но у него был, кроме того, еще один руководящий принцип: создать вполне удовлетворительную релятивистскую волновую механику. Действительно, как мы видели, с самого начала развития волновой механики предполагалось, что релятивистская волновая механика должна базироваться на волновом уравнении второго порядка по времени. Дирак подверг это предположение тщательному изучению и пришел к заключению, что оно должно быть отвергнуто.
Главное возражение Дирака состояло именно в том, что уравнение распространения в релятивистской квантовой механике не может быть уравнением второго порядка по времени. Из такого уравнения в противоположность выводам нерелятивистской волновой механики следует, что если задано какое-либо начальное состояние, выраженное с помощью некоторой «КСИ»-волны, то закон сохранения полной вероятности не выполняется автоматически. Автоматическое же сохранение полной вероятности необходимо для того, чтобы могли соблюдаться общие принципы новой механики.
Дирак проследил эти соображения с железной логикой и пришел к выводу, что уравнение или уравнения релятивистской волновой механики должны обязательно быть уравнениями первого порядка по времени и что, следовательно, в силу релятивистской симметрии пространства и времени они равным образом должны быть уравнениями первого порядка по координатам пространства. Затем с помощью соображений, на которых мы не можем здесь останавливаться, он показал, что в релятивистской волновой механике волновая функция должна иметь четыре компоненты, которые подчиняются системе четырех уравнений в частных производных, которые в целом заменяют единственное уравнение распространения нерелятивистской волновой механики.
Наконец, Дирак исследовал вопрос о том, как преобразуются уравнения распространения и компоненты волновой функции при переходе от одной системы координат к другой. Он довольно красиво показал, что эти уравнения инвариантны относительно преобразования Лоренца. Это сразу сделало его теорию удовлетворительной с релятивистской точки зрения. Он нашел формулы преобразования для четырех компонент волновой функции, которые оказались не такими, как для пространственно временного четырехвектора, а относятся, как мы покажем, к новому типу спинорных преобразований, уже встречавшихся у Паули.
Поразительна именно эта особенность теории Дирака. Уравнения его теории, полученные только с помощью аргументов чисто релятивистской и квантовой природы, в которых нигде не появляется гипотеза о спине, сами по себе содержат все свойства магнитного вращающегося электрона. Действительно, согласно новым уравнениям распространения, электрон будет вести себя так, будто он обладает собственным магнитным моментом, равным магнетону Бора, и собственным механическим моментом, равным половине квантовой единицы момента. Появление спиновых свойств в уравнениях, полученных без привлечения гипотезы о спине, – один из замечательнейших результатов всей современной теоретической физики среди многих, которыми она богата.
Покажем теперь, как теория Дирака связана с теорией Паули. Все, касающееся спиновых свойств в теории Дирака, нужно привести к форме Паули. Иными словами, следует определить, какова вероятность того, что спин будет обладать той или иной из двух возможных величин в некотором направлении D. Чтобы ответить на этот вопрос, необходимо прежде всего выяснить, как разлагается «КСИ»-функция на четыре компоненты, если ось zнаправить вдоль D. Вероятность одной из величин +h/4»пи» «альфа»удет тогда выражаться суммой интенсивностей двух четных компонент (второй и четвертой), а вероятность величины – h/4»пи» – суммой интенсивностей нечетных компонент «КСИ»-функции (первой и третьей). Дальнейшее исследование решений уравнения Дирака показывает, что если скорость частицы мала по сравнению со скоростью света, то первыми двумя компонентами волновой функции можно пренебречь по сравнению с двумя последними. Иными словами, если можно пренебречь релятивистскими эффектами, то «КСИ»-функцию достаточно считать двухкомпонентной. При этом интенсивность одной компоненты определяет вероятность одного из возможных значений спина, а интенсивность второй – другого.