Рассмотрим специальный случай кубического кристалла. Плотность энергии w для него получается такой:
т. е. всего 81 слагаемое! Но кубический кристалл обладает определенными симметриями. В частности, если кристалл повернуть на 90°, то все его физические свойства останутся теми же. Например, у него должна быть одна и та же жесткость относительно растяжения как в направлении оси у, так и в направлении оси х. Следовательно, если мы переменим наши определения осей координат х и у в уравнении (39.15), то энергия не должна измениться. Поэтому для кубического кристалла
Cхххх=Суууу=Czzzz. (39.16)
Мы можем еще показать, что компоненты, наподобие Сххху, должны быть нулями. Кубический кристалл обладает тем свойством, что он симметричен при отражении относительно любой плоскости, перпендикулярной к одной из осей координат. Если мы заменим у на —y, то ничего не должно измениться. Но изменение у на -у меняет еxyна -еxy , так как перемещение в направлении +у будет теперь перемещением в направлении -у. Чтобы энергия при этом не менялась, Схххудолжно переходить в -СхххуНо отраженный кристалл будет тем же, что и прежде, поэтому Сххxyдолжно быть таким же, как и -Сххху. Это может произойти только тогда, когда оба они равны нулю.
Но вы можете сказать: «Рассуждая таким же образом, можно сделать и Cyyyy=0!» Это неверно. Ведь здесь у нас четыре игрека. Каждый у изменяет знак, а четыре минуса дают плюс. Если у встречается два или четыре раза, то такие компоненты не должны быть равны нулю. Нулю равны только те компоненты, у которых у встречается либо один, либо три раза. Таким образом, для кубического кристалла не равны нулю только те С, у которых один и тот же значок встречается четное число раз. (Рассуждения, которые мы провели для у, имеют силу и для х и для z.) Таким образом, выживают только компоненты типа Сххуу, Схуху, Схуухи т. д. Однако мы уже показали, что если изменить все х на у и наоборот (или все z на x и т. д.), то для кубического кристалла мы должны получить то же самое число. Это означает, что остаются всего три различные ненулевые возможности:
Плотность же энергии для кубического кристалла выглядит так:
У изотропного, т. е. некристаллического, материала симметрия еще выше. Числа С должны быть теми же самыми при любом выборе осей координат. При этом, как оказывается, существует другая связь между коэффициентами С:
Cхххх=Cххуу+Cхуху (39.19)
Это можно усмотреть из следующих общих рассуждений. Тензор напряжений Sijдолжен быть связан с eijспособом, который совершенно не зависит от направления осей координат, т. е. он должен быть связан только с помощью скалярных величин. «Это очень просто»,— скажете вы. «Единственный способ получить Sijиз eij — умножить последнее на скалярную постоянную. Получится как раз закон Гука: Sij=(Постоянная)Xеij». Однако это не совсем верно. Дополнительно здесь можно вставить единичный тензор dij, умноженный на некоторый скаляр, линейно связанный с еij. Единственный инвариант, который можно составить и который линеен по е,— это Sejj. (Он преобразуется подобно х2+y2+z2, а значит является скаляром.) Таким образом, наиболее общей формой уравнения, связывающего Sijс eijдля изотропного материала, будет
(Первая константа обычно записывается как 2m; при этом коэффициенту равен модулю сдвига, определенному нами в предыдущей главе.) Постоянные (m, и l называются упругими постоянными Лямэ. Сравнивая уравнения (39.20) с уравнением (39.12), вы видите, что
Таким образом, мы доказали, что уравнение (39.19) действительно правильное. Вы видите также, что упругие свойства изотропного материала, как уже говорилось в предыдущей главе, полностью задаются двумя постоянными.
Коэффициенты С могут быть выражены через любые две из упругих постоянных, которые использовались ранее, например через модуль Юнга Y и отношение Пуассона s. На вашу долю оставляю показать, что
§ 3. Движения в упругом теле
Мы подчеркивали, что в упругом теле, находящемся в равновесии, внутренние напряжения распределяются так, чтобы энергия была минимальной. Посмотрим теперь, что происходит, если внутренние силы не уравновешены. Возьмем маленький кусочек материала внутри некоторой поверхности А (фиг. 39.5).
Фиг. 39.5. Маленький элемент объема V, ограниченный поверхностью А,
Если этот кусочек находится в равновесии, то полная действующая на него сила Fдолжна быть равна нулю. Можно считать, что эта сила состоит из двух частей, одна из которых обусловлена «внешними» силами, подобными гравитации, действующими на расстоянии на вещество нашего кусочка и приводящими к величине силы на единицу объема fвнешн. Полная же внешняя сила Fвнешн равна интегралу от fвнешн по всему объему кусочка:
В равновесии эти силы балансируются полной силой Fвнутр, действующей по поверхности А со стороны окружающего материала. Когда же этот кусочек не находится в равновесии, а движется, сумма внутренних и внешних сил будет равна произведению массы на ускорение. При этом мы получаем
где r—плотность материала, а а — его ускорение. Теперь мы можем скомбинировать уравнения (39.23) и (39.24) и написать
Нашу запись можно упростить, положив
Тогда уравнение (39.25) запишется в виде
Величина, названная нами Fвнутр, связана с напряжениями в материале. Тензор напряжений Sijбыл определен нами в гл. 31 таким образом, что x-компонента силы dF, действующей на элемент поверхности da с нормалью n, задается выражением
Отсюда х-компонента силы Fвнутр, действующей на наш кусочек, равна интегралу от dFxпо всей поверхности. Подставляя это в x-компоненту уравнения (39.27), получаем
Оказалось, что поверхностный интеграл связан с интегралом по объему, а это напоминает нам нечто знакомое по главам об электричестве. Заметьте, что если не обращать внимания на первый значок х в каждом из S в левой части (39.29), то она выглядит в точности как интеграл от величины (S·n), т.е. нормальной компоненты вектора по поверхности. Она была бы равна потоку S через объем. А используя теорему Гаусса, поток можно было бы записать в виде объемного интеграла от дивергенции S. На самом деле все это справедливо независимо от того, есть ли у нас индекс х или нет. Это просто математическая теорема, которая доказывается интегрированием по частям. Другими словами, уравнение (39.29) можно превратить в
Теперь можно отбросить интегралы по объему и написать дифференциальное уравнение для любой компоненты f:
Оно говорит нам, как связана сила, действующая на единицу объема с тензором напряжения Sij.
Вот как работает эта теория внутренних движений твердого тела. Если первоначально нам известны перемещения, задаваемые, скажем, вектором и, то можно найти деформации eij. Из деформаций с помощью уравнения (39.12) можно получить напряжения. Затем с помощью уравнения (39.31) мы из напряжений можем найти плотности сил f. А зная f, мы из уравнения (39.26) получаем ускорение r в материале, которое подскажет нам, как изменятся перемещения. Собирая все это вместе, мы получаем ужасно сложные уравнения движения упругого твердого тела. Я просто напишу вам ответ для изотропного материала. Если вы воспользуетесь для Sijуравнением (39.20) и запишете eijв виде 1/2 (dui/dxj+duj]dxi), то окончательно получите векторное уравнение: