Иллюзия привычного
Наша интуиция питается жизненным опытом. Но этим роль опыта не ограничивается: он формирует опорный каркас, в рамках которого мы анализируем и интерпретируем полученную из окружающего мира информацию. Например, вряд ли вы будете сомневаться, что Маугли, воспитанный стаей диких волков, будет интерпретировать окружающую действительность совсем иначе, чем мы. Даже менее сильные различия, например, различия между людьми, воспитанными в существенно разных культурных традициях, подчёркивают ту роль, которую играет жизненный опыт в восприятии мира.
Однако есть явления, воздействие которых испытывают все. И часто именно убеждения и ожидания, основанные на таком универсальном опыте, труднее всего поддаются определению и пересмотру. Простой, но глубокий пример состоит в следующем. Закрыв эту книгу и встав со стула, вы можете двигаться в трёх независимых направлениях — т. е. в трёх независимых пространственных измерениях. Каким бы путём вы не последовали, — независимо от того, насколько сложным он будет, — результат может быть описан как комбинация перемещений в трёх направлениях: «влево-вправо», «вперёд-назад» и «вверх-вниз». Каждый раз, когда вы делаете очередной шаг, вы неявно делаете три независимых выбора, определяющих ваше движение в этих трёх измерениях.
Эквивалентное утверждение, с которым мы столкнулись, рассматривая специальную теорию относительности, заключается в том, что любая точка Вселенной может быть однозначно определена тремя параметрами, указывающими её положение в этих трёх пространственных измерениях. Например, вы можете описать адрес в городе, указав стрит [8](положение в измерении «влево-вправо»), авеню (положение в измерении «вперёд-назад») и этаж (положение в измерении «вверх-вниз»). Работы Эйнштейна показали нам, что время может рассматриваться как ещё одно измерение (измерение «будущее-прошлое»), что увеличивает общее число измерений до четырёх (три пространственных и одно временно́е). Вы определяете события во Вселенной, указывая, где и когда они произошли.
Эта особенность Вселенной кажется столь фундаментальной и естественной, что обычно даже не упоминается. Тем не менее, в 1919 г. малоизвестный польский математик Теодор Калуца из Кёнигсбергского университета дерзнул бросить вызов очевидному — он предположил, что в действительности Вселенная может иметь нетри измерения, число измерений может быть больше. Иногда предположения, звучащие бессмысленно, таковыми и являются. Иногда они потрясают основы физики. Хотя потребовалось некоторое время на то, чтобы предположение Калуцы получило общее признание, оно привело к революции в формулировке физических законов. Отзвуки этого провидческого прозрения мы слышим до сих пор.
Идея Калуцы и уточнение Клейна
Предположение о том, что наша Вселенная может иметь более трёх пространственных измерений, может показаться бессмысленным, эксцентричным или мистическим. Однако в действительности оно является вполне реальным и тщательно обоснованным. Убедиться в этом будет проще, если на время оставить в покое Вселенную и рассмотреть более привычный объект, например длинный и тонкий Садовый шланг.
Представим, что несколько сотен метров Садового шланга протянуто поперёк каньона, и мы наблюдаем его с расстояния, скажем, в километр, как показано на рис. 8.1 а. С такого расстояния хорошо видна горизонтальная протяжённость длинного развёрнутого шланга, однако, если только вы не обладаете орлиным зрением, вам будет трудно оценить его обхват. Наблюдая шланг с такого большого расстояния, вы можете подумать, что если бы на шланге жил муравей, у него было бы только одноизмерение для прогулок: влево-вправо вдоль шланга. Если бы вас попросили указать, где этот муравей находится в какой-то момент времени, вам достаточно было бы указать только одночисло: расстояние от муравья до левого (или правого) конца шланга. Основная идея этих рассуждений состоит в том, что с расстояния в километр длинный кусок Садового шланга выглядит одномерным объектом.
Рис. 8.1. а) Садовый шланг со значительного расстояния выглядит одномерным объектом. б) При увеличении становится видимым второе измерение — то, которое имеет форму окружности, охватывающей ось шланга
На самом деле известно, что у шланга естьобхват. Вам, быть может, трудно разглядеть это с расстояния в километр, но если вы вооружитесь биноклем, он увеличит изображение шланга, и вы сможете увидеть это обхват непосредственно, как показано на рис. 8.1 б. Рассматривая увеличенное изображение, вы увидите, что у маленького муравья, живущего на шланге, на самом деле есть дванезависимых направления для прогулок. Одно из них, как вы уже заметили, проходит влево-вправо по длине шланга, а второе — это измерение «по часовой стрелке — против часовой стрелки», расположенное по окружности шланга. Теперь вы понимаете, что для того, чтобы сказать, где ваш крошечный муравей находится в заданный момент, вы должны указать двачисла: положение муравья вдоль длины шланга и его положение на окружности. Это отражает тот факт, что поверхность Садового шланга является двумерной. {58}
Эти два измерения явно различаются. Направление вдоль шланга является длинным, протяжённым, и хорошо видимым. Направление, опоясывающее шланг, является коротким, «свёрнутым» и трудноразличимым. Для того чтобы узнать о существовании циклического измерения, приходится исследовать шланг с существенно большим разрешением.
Этот пример подчёркивает неочевидную и важную особенность пространственных измерений: они могут быть двух видов. Они могут быть просторными, протяжёнными и, вследствие этого, доступными непосредственному наблюдению, но они также могут быть маленькими, скрученными и гораздо менее поддающимися обнаружению. Конечно, в нашем примере не пришлось тратить слишком много усилий на то, чтобы обнаружить «свёрнутое» измерение, опоясывающее ось шланга. Вам было достаточно воспользоваться биноклем. Однако если вам придётся иметь дело с очень тонким Садовым шлангом, имеющим обхват волоса или капилляра, обнаружить свёрнутое измерение будет не так-то просто.
В статье, которую Калуца отправил Эйнштейну в 1919 г., он высказал удивительное предположение. Калуца утверждал, что пространственная структура Вселенной может содержать больше измерений, чем три известных нам из жизненного опыта. Как мы вскоре увидим, мотивом для столь радикальной гипотезы было то, что она позволяла построить элегантный и мощный аппарат, объединяющий общую теорию относительности Эйнштейна и теорию электромагнитного поля Максвелла в единую и однородную концептуальную систему. Но как это предложение может согласовываться с тем очевидным фактом, что мы видимв точности три пространственных измерения?
Ответ, который в неявной форме содержится в работе Калуцы, и который позднее был выражен в явном виде и уточнён шведским математиком Оскаром Клейном в 1926 г., состоит в том, что структура пространства нашей Вселенной может содержать как протяжённые, так и свёрнутые измерения. Это значит, что в нашей Вселенной есть измерения, которые являются просторными, протяжёнными и легко доступными для наблюдения, подобно длине Садового шланга. Однако, подобно циклическому измерению того же шланга, Вселенная может содержать и дополнительные пространственные измерения, которые туго скручены в ничтожно малой области — столь малой, что она не может быть обнаружена даже с помощью самого современного экспериментального оборудования.
Чтобы получить более ясное представление о сути этого замечательного предложения, вернёмся на минуту к примеру с Садовым шлангом. Представим себе, что на шланге чёрной краской нарисовано с малым шагом большое количество охватывающих его окружностей. Издалека шланг по-прежнему выглядит тонкой одномерной линией. Но, взглянув на него в бинокль, вы обнаружите свёрнутое измерение; после окраски найти его будет ещё легче, чем раньше. Оно будет выглядеть так, как показано на рис. 8.2. Ясно видно, что поверхность шланга является двумерной, с одним крупным и протяжённым измерением, а другим небольшим и имеющим форму окружности. Калуца и Клейн предположили, что аналогичную структуру имеет и наша Вселенная, только в ней имеется три обычных, протяжённых измерения и одно маленькое, циклическое; таким образом, общее число пространственных измерений равно четырём. Нарисовать предмет в пространстве с таким числом измерений непросто, поэтому для большей наглядности мы ограничились случаем двух протяжённых и одного маленького циклического измерения. Мы изобразили это на рис. 8.3, где структура пространства последовательно увеличивается примерно так же, как в случае поверхности Садового шланга.