Астроном или физик-теоретик заключит:
Все это так. Но главная заслуга Фридмана — его работы в области космологии.
Да, этот человек был многогранен, разносторонне талантлив, очень деятелен. По складу характера — прямая противоположность Эйнштейну. Вместо заветной эйнштейновской тишины и уединения, вместо «башни из слоновой кости» (по мнению Эйнштейна — идеальное место для научной работы) у Фридмана — корзина аэростата, директорство в Аэрологической обсерватории, яростное воспитание молодых ученых. Он расценивал эту свою черту как недостаток, как склонность разбрасываться. Нарочно ограничивал себя, сдерживал в рамках главной увлеченности, которой считал геофизику атмосферы, теоретическую метеорологию. И сделал в этой области немало.
Но судьба распорядилась так, что самым высоким и прочным памятником Фридману стала именно побочная его работа, родившаяся из непреодолимого интереса к глубинной проблеме теоретической физики — релятивистской космологии. Верный поклонник и тонкий знаток общей теории относительности, Фридман сумел по-своему решить эйнштейновскую систему мировых уравнений. В 1922 году он начал публиковать работы, в которых избавил релятивистский мир от окаменелого покоя, создал общепринятую ныне теорию расширяющейся Вселенной.
Он рано и нелепо умер — от брюшного тифа (в 1925 году, в возрасте 37 лет), ровно через два месяца после уникального и рискованного подъема на аэростате. И долго имя его как космолога оставалось в тени, потому что очень уж парадоксальной казалась выдвинутая им идея. Слава пришла к нему через несколько десятилетий после смерти.
Что равно нулю?
Как шел Фридман к своей теории, придется умолчать. Уместен лишь упрощенный пересказ логической канвы.
По Эйнштейну, из системы десяти мировых уравнений, написанных для Вселенной с «киселем» вещества (равномерным космологическим субстратом), удается извлечь одно. Левая его часть представляет собой произведение двух математических выражений, правая же, как положено в любых уравнениях, есть нуль. С начальных уроков алгебры вам известно: когда произведение равно нулю, обязательно равен нулю один из сомножителей. Вопрос заключается в том, какой именно. Какой сомножитель приравнять нулю?
Тут-то Эйнштейн и сделал выбор между движением и неподвижностью, отдав предпочтение последней. Он приравнял нулю тот из сомножителей, где содержалась величина, связанная со скоростью изменения средней плотности мировой материи. И отсюда, с помощью космологической постоянной, извлек свою модель стационарного замкнутого мира, ту самую, что оказалась потом шаткой и ненадежной.
Фридман же, допустив в принципе нестационарность Вселенной, приравнял нулю другой сомножитель. И получил целый класс новых, неожиданных решений. Все они представляли собой математические функции, изменяющиеся с течением времени.
Здесь законен вопрос: а какого времени? Ведь если материи во Вселенной позволено двигаться, то, надо думать, и времени разрешено претерпевать изменения вместе с движущейся материей — как того требует теория относительности. Можно ли тогда соблюсти строгость, рассуждая об изменении Вселенной в каком-то одном, едином времени? Не возрождается ли ньютоновская абсолютность?
Да, можно. Нет, не возрождается.
Положение спасает эйнштейновский моллюск — деформирующаяся система отсчета. В каждой точке однородной, лишенной крупных потоков и вихрей, Вселенной мы вправе представить себе моллюск, неподвижный относительно ближайших космических окрестностей — так называемые сопутствующие координаты. В них последовательность мировых событий едина. А потому каждый наблюдатель, покоящийся относительно сопутствующих координат, может пользоваться собственным временем для всей Вселенной. Строение и поведение моллюска как раз и дает космологическую модель мира.
Пульс мира
Фридмановские модели не могли не двигаться. Мир с необходимостью обрел динамизм. Как же решался вопрос о его конечности или бесконечности?
Допускались обе эти возможности — дело зависело от средней плотности материи. При большой средней плотности вышел мир конечный и пульсирующий, как сердце. Такова закрытая космологическая модель Фридмана. А при малой средней плотности из уравнений вставала открытая модель — бесконечная, способная либо расширяться, либо сжиматься. Причем во всех случаях тем быстрее, чем дальше от наблюдателя.
Эта особенность фридмановских моделей трудновата для наглядного представления: кажется нелепостью расширение сразу изо всех точек или сжатие сразу ко всем точкам (потому что в каждой может находиться наблюдатель). Но надо вспомнить, что речь идет не о движении тел в пространстве—времени, а о деформации самого пространства — времени, самой системы отсчета (моллюска), о преобразовании действующих там метрических правил: чем дальше, тем заметнее становятся изменения метрики. Прочувствуйте это хорошенько, вспомнив сказанное раньше о неевклидовой геометрии, — и будет, я думаю, понятно.
А вот наиболее существенное. В теории Фридмана впервые в истории космологии полностью отсутствовало что-либо специально придуманное, искусственно привнесенное, вроде космологической постоянной, сыгравшей у Эйнштейна и де Ситтера роль Атласа — вседержителя небес и звездного подметальщика. Прямо от земной физики, и только от нее, — ко всему миру. От падающего камня, от розетки Меркурия, от светового луча, согнувшегося возле Солнца, — к безбрежным сонмам галактик. Нет в природе вещей, недоступных взгляду махонькой человеческой науки, — вот что было неявно заявлено в трудах Фридмана. Весь мир, все глубины его познаваемы с крошки Земли!
Извинение гения
Эйнштейн к решениям Фридмана отнесся ворчливо. Посчитал их неверными. Был недоволен, написал опровержение в журнал, где они были напечатаны.
Фридман послал Эйнштейну письмо, в котором вежливо спорил. Доказывал свое. Потом с Эйнштейном встретились коллеги Фридмана, советские ученые, работавшие тогда в Германии, и тоже старательно убеждали великого физика.
В конце концов произошло уникальное в эйнштейновской биографии, хоть и закономерное событие: самокритичный, ироничный, чуждый важничанья и упрямства, Эйнштейн признал свою неправоту. Признал безупречную верность решений Фридмана. Извинился перед Фридманом и потом во многих своих статьях ссылался на его исследование.
А как же с космологической постоянной? Дошло до того, что Эйнштейн публично отрекся от нее, как праведник от бесовского наваждения. И объявил ее самой большой из всех ошибок, когда-либо им совершенных.
После этого три фридмановские модели Вселенной — конечная пульсирующая, бесконечная сжимающаяся и бесконечная расширяющаяся — начали жизнь в науке.
Сразу встал вопрос: какой из моделей отдать предпочтение, какая ближе к реальности?
Дилемма решалась на основании конкретных наблюдений и вычислений.
„Комната" космоса
Во-первых, тип модели — открыта она или закрыта? Бесконечна или конечна? Для ответа надо узнать среднюю плотность вещества в нашем мире. И вот тут пора сделать очень серьезную оговорку.
В ходе космологических рассуждений нам понадобилось выяснить среднюю плотность мирового вещества, то есть - сделать, по существу, физический опыт. Но исполнить его даже в принципе мыслимо лишь там, куда мы в состоянии заглянуть через астрономические инструменты или поставить прибор, а значит, в пределах нашего пространственно-временного мира. Поэтому все выводы относятся лишь к доступной нам (хотя бы в принципе) пространственно-временной «комнате» космоса. Ее называют обычно Метагалактикой или Мегамиром.
Быть может, есть в неисчерпаемой Вселенной и другие миры, другие пространственно-временные «комнаты». В этом допущении нет ничего мистического. Другой мир — отнюдь не потусторонний мир. Он вполне материален, так же как и наш. Но оттуда к нам невозможно принести прибор. И туда от нас нельзя добраться даже за вечность нашего времени. Подобно тому как обитатель «шара Пуанкаре» не в состоянии выйти из него и вынести что-нибудь за его пределы.
Сегодня еще никто не доказал достоверность существования других миров. Разговоры о них — только предположения. Но ради осторожности надо иметь в виду: когда произносятся слова «мир», «мироздание», «Вселенная», речь идет о Метагалактике или Мегамире.
Открыта или закрыта?
Итак, прикидываем массу звезд и темного космического вещества в доступном астрономическому взгляду участке мироздания, делим на объем этого участка...
Если получится больше, чем 2·10-29 грамма на кубический сантиметр, значит, мир замкнут. Всюду в нем положительная кривизна длиннейших четырехмерных световых и геодезических линий (вспомните еще раз меридианы на глобусе), ограниченное количество вещества и света. Из такого мира нет «выхода», хоть нет у него и границ — обитатели его находятся в положений жителей четырехмерного «шара Пуанкаре». По Фридману, такая безграничная, но конечная модель, как сказано выше, медленно пульсирует.