MyBooks.club
Все категории

Дэйв Голдберг - Вселенная. Руководство по эксплуатации

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Дэйв Голдберг - Вселенная. Руководство по эксплуатации. Жанр: Физика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Вселенная. Руководство по эксплуатации
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
158
Читать онлайн
Дэйв Голдберг - Вселенная. Руководство по эксплуатации

Дэйв Голдберг - Вселенная. Руководство по эксплуатации краткое содержание

Дэйв Голдберг - Вселенная. Руководство по эксплуатации - описание и краткое содержание, автор Дэйв Голдберг, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга «Вселенная. Руководство по эксплуатации» — идеальный путеводитель по самым важным — и, конечно, самым упоительным — вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?». Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Г. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина! Настоящий подарок для всех, кого интересует современная наука, — от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук!

Вселенная. Руководство по эксплуатации читать онлайн бесплатно

Вселенная. Руководство по эксплуатации - читать книгу онлайн бесплатно, автор Дэйв Голдберг

Но когда общаешься с физиком, всегда следует ожидать худшего. Что если мы вам скажем, что с течением времени сама материя будет медленно выкипать и испаряться?


Конец материи

Да, мы знаем, что всерьез испортим вам настроение, поэтому первым делом поймите, что все это случится далеко не завтра. Когда речь идет о галактиках, черных дырах и испаряющейся материи, мы говорим даже не о миллионах и не о миллиардах лет. Мы говорим о периодах времени в триллионы миллиардов раз больше нынешнего возраста Вселенной. Учитывая, сколько гадостей произойдет за это время, гибель материи можно смело поместить в самый низ перечня ваших страхов.

Задаваясь вопросом о распаде материи, мы с практической точки зрения задаемся вопросом о распаде протонов. Мы уже говорили, что при всяком удобном случае нейтрон распадается на протон и кое-что еще, но только потому, что он тяжелее протона. Протон — самый легкий из барионов, поэтому мы ожидаем, что он сколько-то проживет.

Вопрос в том, сколько именно, и на это стандартная модель дает простой недвусмысленный ответ. Вечно. Протоны не распадаются, поскольку общее число барионов должно сохраняться. Поскольку протон — самый легкий барион, распадаться ему не на что.

Но если эта глава чему-то успела вас научить, так это тому, что стандартная модель отвечает отнюдь не на все вопросы. Если реакция идет в одном направлении, значит, должна иметь место и обратная реакция. Наверняка когда-то, еще во время Большого взрыва, было время, когда барионы создавались из ничего. С этой научной проблемой мы встретились в главе 7, когда обнаружили, что если бы барионы с антибарионами всегда создавались только парами, то и аннигилировать они должны тоже парами. Вы живое и ходячее доказательство того, что в какой-то момент все-таки имело место превосходство барионов над антибарионами! Вам повезло.

Вероятно, выработка лишних барионов имела место в конце периода инфляции, примерно через 10-32 секунды после Большого взрыва, а значит, она, вероятно, имела какое-то отношение к унификации электрослабого и сильного взаимодействий. Если закон сохранения количества барионов не действовал тогда, то и сейчас он в некоторой степени тоже не действует.

Представьте себе, что у вас есть собственная великая теория унификации (ВТУ). Первым делом мы бы спросили у вас, сколько, согласно вашей ВТУ, живет типичный протон. Согласно практически всем этим теориям до единой, протоны в конце концов распадаются на позитрон и еще одну частицу под названием пион. Главное различие между разными теориями — средняя продолжительность жизни протона. И это хорошо. Это значит, что если мы сумеем выяснить, сколько живут протоны, то у нас появится отменный критерий точности различных ВТУ — по крайней мере мы сможем тут же просеять эти теории сквозь частое сито.


Где же он, распад протонов?

Некоторые из ранних моделей ВТУ предсказывали, что протон живет примерно 1031 лет. Это очень-очень долго. Гораздо больше возраста Вселенной, поэтому вы вправе предположить, что физики, которые выдвинули эти модели, просто взяли наугад протон-долгожитель и решили, что все равно никто не проживет настолько долго, чтобы опротестовать их нобелевский банковский счет.

К счастью, нам не нужно брать протончик, класть его на стол и ждать, когда он превратится во что-нибудь другое, — у нас есть методы и получше. В 1980-х годах ученые поняли, что для этого нужно построить гигантские подземные бассейны со сверхчистой водой[145].

Главная цель таких экспериментов — посмотреть, распадется ли хоть один протон в бассейне, если оставить его в покое. Если да, то заряженные частицы, создавшиеся при распаде, промчатся по бассейну и испустят излучение, которое будет зафиксировано детекторами. Поскольку протонов много, разумно предположить, что, если наблюдать достаточно долго, хоть один да покинет сию юдоль скорби.

Что-то подобное мы видели в главе 3, когда говорили о космическом генераторе случайных чисел. Представьте себе, что протон и в самом деле живет 1031 лет. Это значит, что каждый год космический генератор случайных чисел бросает игральную кость, у которой 1031 граней, по одному разу на каждый протон в бассейне. Если у генератора выпадет единичка, соответствующий протон распадается. «Супер-Камиоканде» находится в шахте Моцуми неподалеку от японского города Хида, эксперименты подобного рода идут уже 25 лет, и еще ни разу не было засвидетельствовано ни одного распада[146].

Это хорошие новости, поскольку отрицательный результат означает, что в обозримом будущем нам не придется спонтанно распадаться на высокоэнергичные частицы. С другой стороны, это плохие новости для некоторых ВТУ, поскольку теперь их можно легко опровергнуть. В наши дни остается все меньше и меньше моделей, соответствующих все — более и более долгой минимальной жизни протонов, но многие из них предполагают примерно 1036 лет.

Учитывая, насколько мы близки к точному определению этого периода, стоит ли удивляться, что мы уверены, будто определим его совсем скоро?

III. Какова масса нейтрино?

Обсуждая кандидатов на роль темной материи, мы поговорили и о нейтрино и тут же отмели его. «Легковат», — сказали мы. Если бы вы спросили нас, какова на самом деле масса нейтрино, мы бы начали ерзать и опускать глаза. Попросту говоря, мы не знаем, а долгое время вообще полагали, что нейтрино лишены массы. Оказывается, это не так, но первые признаки того, что нейтрино обладают массой, мы пронаблюдали практически случайно.


Природные фабрики нейтрино

Нейтрино — этакие проказливые чертенята. Поскольку они участвуют только в слабом взаимодействии, их нельзя взвесить, а поскольку они электрически нейтральны, на них не действуют электромагнитные поля. Зато мы можем создавать их в ядерных реакторах, и природные реакторы, они же звезды, производят их в изобилии.

Мы расскажем вам одну историю. Примерно 160 тысяч лет назад в одной галактике неподалеку от нас — в Большом Магеллановом Облаке — произошла вспышка сверхновой. Поскольку свет добирается до нас не мгновенно, увидели мы эту вспышку лишь в 1987 году, и это было одно из самых примечательных астрономических событий в истории человечества. Вместе с излучением во время вспышки высвободилось громадное количество нейтрино — настолько громадное, что очень много нейтрино долетели до Земли. Нам повезло, у нас были наготове мощные детекторы, и мы засекли пик нейтрино в тот самый момент, как только увидели свет вспышки. То есть нейтрино прибыли к нам если не со скоростью света, то по крайней мере настолько близко к скорости света, что мы не были в состоянии отметить разницу. Это было предпоследнее свидетельство в пользу того, что если нейтрино и не лишены массы, они необычайно легкие даже по субатомным стандартам.

Наверное, вы думаете, будто то, что мы установили и настроили мощные детекторы как раз перед вспышкой сверхновой 1987А — это крайнее везение. Ну что вы, везение тут ни при чем, и вам это станет понятно, когда мы расскажем, как выглядят некоторые детекторы нейтрино. Это гигантские подземные бассейны с суперчистой водой. Вспомнили? Ну конечно. Многие из установок для опытов по распаду протонов в результате сослужили двойную службу[147] — стали обсерваториями нейтрино.

Предсказать вспышку сверхновой невозможно, поэтому представляется несколько неконструктивным дожидаться сверхновой в надежде наловить нейтрино. К счастью, сверхновые — не единственные фабрики нейтрино. Наше собственное Солнце вырабатывает нейтрино в похожих количествах вместе с фотонами в ходе своих термоядерных упражнений. Просто фотоны больше бросаются в глаза.


Ловлей нейтрино мы занимаемся уже довольно давно. В 1960-е годы большой интерес вызывали попытки засечь нейтрино с Солнца, поэтому Раймонд Дэвис из Брукхавенской национальной лаборатории и Джон Бакалл, который тогда работал в Калифорнийском технологическом институте, возглавили работу по строительству… да, вы угадали: гигантского подземного бассейна. Обсерватория Хоумстейк, построенная в заброшенных золотых копях в Южной Дакоте, на самом деле была бассейном на тысячи Кубометров, наполненным моющим средством[148].

Нейтрино влетает, ударяется о какой-нибудь атом хлора, превращает хлор в радиоактивный аргон, а аргон распадается, испуская свет. Проще некуда!

Единственная сложность состоит в том, что детекторы не принесли ожидаемых результатов. Бакалл предсказывал, что будет получено раза в два-три больше нейтрино, чем засекли на самом деле. Последующие эксперименты, в которых вместо моющего средства использовалась вода, показали то же самое.

Кто-то крадет почти все нейтрино! Но кто?!


Дэйв Голдберг читать все книги автора по порядку

Дэйв Голдберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Вселенная. Руководство по эксплуатации отзывы

Отзывы читателей о книге Вселенная. Руководство по эксплуатации, автор: Дэйв Голдберг. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.