MyBooks.club
Все категории

Ричард Фейнман - 1. Современная наука о природе, законы механики

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Ричард Фейнман - 1. Современная наука о природе, законы механики. Жанр: Физика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
1. Современная наука о природе, законы механики
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
171
Читать онлайн
Ричард Фейнман - 1. Современная наука о природе, законы механики

Ричард Фейнман - 1. Современная наука о природе, законы механики краткое содержание

Ричард Фейнман - 1. Современная наука о природе, законы механики - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

1. Современная наука о природе, законы механики читать онлайн бесплатно

1. Современная наука о природе, законы механики - читать книгу онлайн бесплатно, автор Ричард Фейнман

§ 2. Физика до 1920 года

Нам было бы нелегко начать прямо с сегодняшних взгля­дов. Посмотрим лучше, как выглядел мир примерно в 1920 г., а затем сотрем с этой картины лишнее.

До 1920 г. картина была примерно такова. «Сцена», на ко­торой выступает Вселенная, — это трехмерное пространство, описанное еще Евклидом; все изменяется в среде, называемой временем. Элементы, выступающие на сцене,— это частицы, например атомы; они обладают известными свойствами, скажем свойством инерции: когда частица движется в каком-то направ­лении, то делает она это до тех пор, пока на нее не подействуют силы. Следовательно, второй элемент — это силы; считалось, что они бывают двух сортов. Первый, чрезвычайно запутанный тип — сила взаимодействия, т. е. сила, скрепляющая атомы в разных их комбинациях; она, например, и решает, быстрее или медленнее начнет растворяться соль при нагревании. Дру­гой же сорт сил — это взаимодействие на далеких расстояниях— притяжение, спокойное и ровное; оно меняется обратно про­порционально квадрату расстояния и именуется тяготением, или гравитацией. Закон ее известен и прост. Но почему тела остаются в движении, начав двигаться, или отчего существует закон тяготения — это было неизвестно.

Продолжаем наше описание природы. С этой точки зрения газ, как, впрочем, и все вещество, это мириады движущихся частиц. Таким образом, многое из увиденного нами на морском берегу теперь запросто увязывается в единое целое. Давление сводится к ударам атомов о стенки; снос атомов (их движение в одну сторону) — это ветер; хаотические внутренние движе­ния — это теплота. Волны — избыток давления, места, где собралось слишком много частиц; разлетаясь, они нагнетают в новых местах такие же скопления частиц; эти волны избытка плотности суть звуки. Понять все это было немаловажным до­стижением (кое о чем мы уже писали в предыдущей главе).

Какие сорта частиц существуют? В то время считалось, что их 92; восемьдесят девять типов атомов были к тому времени открыты. Каждый тип имел свое название.

Дальше возникала проблема: что такое силы близкодействия. Почему атом углерода притягивает один, в лучшем случае два атома кислорода, но не более? В чем механизм взаимодействия между атомами? Уж не тяготение ли это? Нет. Оно чересчур слабо для этого. Надо представить себе силу, сходную с тяго­тением, тоже обратно пропорциональную квадрату расстоя­ния, но несравненно более мощную. У нее есть еще одно отли­чие. Тяготение — это всегда притяжение; допустим теперь, что бывают «предметы» двоякого сорта, и эта новая сила (имеет­ся, конечно, в виду электричество) обладает таким свойством, что одинаковые сорта отталкиваются, а разные притягиваются. «Предмет», несущий с собой это сильное взаимодействие, на­зывается зарядом.

Что же тогда получается? Положим, что два различных сор­та (плюс и минус) приложены друг к другу вплотную. Третий заряд находится вдалеке. Почувствует ли он притяжение? Практически нет, если первые два одинаковы по величине: притяжение одного и отталкивание другого уравновесятся. Значит, на заметных расстояниях сила незаметна. Но когда третий заряд приблизится вплотную, то возникнет притяжение: отталкивание однородных зарядов и притяжение разнородных будут стремиться свести между собой разнородные заряды и удалить друг от друга однородные. В итоге отталкивание ока­жется слабее притяжения. По этой причине атомы, слагающиеся из положительных и отрицательных зарядов, мало влияют друг на друга на заметных расстояниях. Зато уж если они сблизят­ся, то свободно могут «разглядывать изнутри» друг друга, пере­страивать расположение своих зарядов и сильно взаимодейст­вовать. В конечном итоге именно электрическая сила объясняет взаимодействие атомов. Сила эта столь велика, что все плюсы и минусы обычно вступают в предельно тесную связь друг с дру­гом: они стянуты насколько возможно. Все тела, даже наши соб­ственные, состоят из мельчайших плюс- и минус- долек, очень сильно взаимодействующих друг с другом. Количество плюсов и минусов хорошо сбалансировано. Только на мгновение слу­чайно можно соскрести несколько плюсов или минусов (обычно минусы соскребать легче); тогда электрическая сила окажется неуравновешенной и можно почувствовать действие электриче­ского притяжения.

Чтобы дать представление о том, насколько электричество сильнее тяготения, расположим две песчинки размером в миллиметр в 30 м одна от другой. Пусть все заряды только при­тягиваются и их взаимодействие друг на друга внутри песчинок не погашается взаимно. С какой силой эти две песчинки притя­гивались бы? С силой в три миллиона тонн! Понимаете теперь, почему малейшего избытка или нехватки положительных или отрицательных зарядов достаточно, чтобы произвести замет­ное электрическое действие? По той же причине заряженные тела не отличаются ни по массе, ни по размеру от незаряженных: нужно слишком мало частиц, чтобы зарядить тело, чтобы почув­ствовалось, что оно заряжено.

Зная все это, легко было представить себе и устройство ато­ма. Считалось, что в центре его положительно заряженное электричеством очень массивное «ядро», оно окружено неко­торым числом «электронов», очень легких и заряженных от­рицательно. Забегая вперед, заметим, что впоследствии в самом ядре были обнаружены два рода частиц — протоны и нейт­роны, весьма тяжелые и обладающие близкими массами. Про­тоны заряжены положительно, а нейтроны не заряжены вовсе. Когда в ядре атома имеется шесть протонов и ядро окружено шестью электронами (отрицательные частицы обычного мира материальных тел — все электроны, они намного легче прото­нов и нейтронов), то этот атом в химической таблице стоит под номером 6 и называется углеродом. Атом, имеющий номер 8, называется кислородом, и т. д. Химические свойства зависят от внешней оболочки — электронов, а точнее, только от того, сколько их там; все химические особенности вещества зависят от одного-единственного числа — количества электронов. (Список названий элементов, составленный химиками, на самом деле может быть заменен нумерацией 1, 2, 3 и т. д. Вместо того чтобы говорить «углерод», можно было бы сказать «эле­мент шесть», подразумевая шесть электронов. Но, конечно, когда открывали элементы, не подозревали, что их можно так пронумеровать; к тому же именовать их по номерам не очень удобно. Лучше, чтобы у каждого из них было собственное имя и символ.)

И еще многое другое стало известно об электрической силе. Естественно было бы толковать электрическое взаимодействие как простое притяжение двух предметов, положительно и от­рицательно заряженных. Однако выяснилось, что такой под­ход плохо помогает уяснению природы электрической силы. Толкование, более отвечающее положению вещей, таково: когда где-то имеется положительный заряд, то он искривляет в каком-то смысле пространство, создает в нем некоторое усло­вие для того, чтобы минус-заряд, помещенный в это простран­ство, ощутил действие силы. Эта возможность порождать силы называется электрическим полем. Когда электрон помещен в электрическое поле, мы говорим, что он «притягивается». При этом действуют два правила: а) заряды создают поле и б) на за­ряды в поле действуют силы, заставляя их двигаться. Причина этого станет ясна, когда мы разберем следующее явление. Если мы зарядим тело, скажем расческу, электричеством, а затем по­ложим рядом заряженный клочок бумаги и начнем водить расче­ской взад и вперед, то бумага будет все время поворачиваться к расческе. Ускорив движение расчески, можно обнаружить, что бумага несколько отстает от ее движения, возникает запаз­дывание действия. (Сперва, когда мы водим расческой мед­ленно, дело усложняется магнетизмом. Магнитные влияния появляются, когда заряды движутся, друг относительно друга, так что магнитные и электрические силы в действительности могут оказаться проявлениями одного и того же поля, двумя сторонами одного и того же явления. Изменяющееся электри­ческое поле не может существовать без магнитного действия.) Если бумагу отодвинуть, запаздывание возрастет. И тогда наб­людается интересная вещь. Хотя сила, действующая между двумя заряженными телами, изменяется обратно квадрату рас­стояния, при колебаниях заряда его влияние простирается нам­ного дальше, чем можно было ожидать. Это значит, что оно умень­шается медленнее, чем по закону обратных квадратов.

Что-то похожее на это происходит, если в бассейн с водой брошен поплавок; можно подействовать на него «непосредствен­но», бросив в воду поблизости другой поплавок; при этом если вы смотрели только на поплавки (не на воду), то вы увидите лишь, что один из них сместился в ответ на движения другого, т. е. что между ними существует какое-то взаимодействие. А ведь дело только в том, что вы взволновали воду: это вода ше­вельнула второй поплавок. Из этого можно даже вывести «за­кон»: если шевельнуть чуть-чуть поплавок, все соседние по­плавки зашевелятся. Будь поплавок подальше, он бы едва покачнулся, ведь мы возмутили поверхность воды один раз и в одном месте. Но когда мы начнем непрерывно покачивать поп­лавок, возникнет новое явление: побегут волны и влияние колеба­ний поплавка распространится намного дальше. Это будет коле­бательное влияние, и уж его не объяснить прямым взаимодей­ствием поплавков. Мысль о непосредственном взаимодействии придется заменить предположением о существовании воды или, для электрических зарядов, того, что называется электромаг­нитным полем.


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


1. Современная наука о природе, законы механики отзывы

Отзывы читателей о книге 1. Современная наука о природе, законы механики, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.