MyBooks.club
Все категории

Айзек Азимов - Нейтрино - призрачная частица атома

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Айзек Азимов - Нейтрино - призрачная частица атома. Жанр: Физика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Нейтрино - призрачная частица атома
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
285
Читать онлайн
Айзек Азимов - Нейтрино - призрачная частица атома

Айзек Азимов - Нейтрино - призрачная частица атома краткое содержание

Айзек Азимов - Нейтрино - призрачная частица атома - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.

Нейтрино - призрачная частица атома читать онлайн бесплатно

Нейтрино - призрачная частица атома - читать книгу онлайн бесплатно, автор Айзек Азимов

Свет проявляет свойства, которые можно объяснить предположив, что он состоит из волн различной длин Присутствие определенных длин волн и отсутствие других характеризует материал, служащий источником света. Каждый химический элемент, если его раскалить до высокой температуры, дает в спектре характерный набор длин волн, по которому его можно отличить от других элементов. Этот метод был тщательно разработан в 1859 году немецким физиком Густавом Робертом Кирхгофом. Так как свет разлагается в спектр, т. е. в полосу расположенных по порядку длин волн, техника разложения была названа спектроскопией. С помощью спектроскопии можно получить сведения о химическом составе Солнца. Оказалось, что оно содержит те же химические элементы, что и Земля. По крайней мере спектральные характеристики различных хорошо известных химических элементов в точности воспроизводят отдельные области солнечного спектра. Изучение спектра звезд наглядно свидетельствует о том, что остальная Вселенная состоит из тех же элементов.

В 1868 году, когда некоторые спектральные характеристики солнечного света нельзя было воспроизвести никаким из известных элементов, английский астроном Джозеф Норман Локьер предположил существование нового элемента, еще не открытого на Земле. Он назвал его гелием, что по-русски означает «солнце». В конце концов в 1895 году этот солнечный элемент действительно был открыт на Земле. Итак, если предположить, что научное обобщение (в частности, законы сохранения) универсально для Вселенной, можно по-новому взглянуть на астрономию. До 1700 года астрономы ограничивались только наблюдением небесного свода, затем они вышли за пределы простого наблюдения. Они делали все больше и больше выводов о структуре небесных тел, об их прошлом и будущем, применяя к ним земные законы сохранения.

Например, Солнечная система состоит из тел, которые вращаются вокруг своих осей и движутся вокруг других тел. Так, Луна движется вокруг Земли, Ганимед — вокруг Юпитера, а Земля и Юпитер вращаются вокруг Солнца. Если Солнечную систему обозревать с точки, расположенной над Северным полюсом, окажется, что Земля вращается вокруг своей оси против часовой стрелки. Точно так же вращается Солнце и все планеты, за исключением Урана и Венеры. Более того, все планеты без исключения и все спутники с одним небольшим несущественным исключением вращаются вокруг Солнца или некоторых центральных планет против часовой стрелки. Следовательно, имеется громадный момент количества движения, только незначительная часть которого скомпенсирована противоположным моментом количества движения. Поэтому любая теория, пытающаяся объяснить возникновение Солнечной системы, должна объяснить существование этого момента количества движения. Он не мог возникнуть из ничего, он должен был образоваться в процессе формирования Солнечной системы, при котором компенсирующий противоположный момент был передан остальной части Вселенной.

Более того, если тела Солнечной системы рассматривать отдельно, окажется, что планеты, масса которых составляет меньше 0,2 % общей массы Солнечной системы, обладают 98 % полного момента количества движения. Солнце, имея массу больше 99,8 % общей массы Солнечной системы, обладает только 2 % момента количества движения. Любая теория, пытающаяся объяснить образование Солнечной системы, должна, следовательно, объяснить не только существование момента количества движения, но и его неравномерное распределение.

Удовлетворить требованиям сохранения момента количества движения при создании теорий образования солнечной системы оказалось нелегко. Однако без закона сохранения подходила бы почти любая теория образования Солнечной системы, и нельзя было отдать предпочтение ни одной из них. До сих пор еще не создана теория полностью и удовлетворительно объясняющая существование и распределение момента количества движения, хотя астрономы прилагают свои усилия в определенных направлениях. Добавим, что когда в конце концов возникнет теория, которая полно и логично объяснит существование и распределение момента количества движения будут все основания считать ее верной, так как невероятно, чтобы две радикально противоположные теории независимо удовлетворяли такому строгому условию, как закон сохранения момента количества движения.

Мы рассмотрим одну из иллюстраций могущества закона сохранения. В дальнейшем нам встретится целый ряд подобных примеров.

Энергия Солнца

Момент количества движения приводит в затруднение, когда мы пытаемся объяснить далекое прошлое Солнечной системы, но в настоящее время нет никаких доказательств, что момент количества движения Солнечной системы не сохраняется. Однако, когда открыли закон сохранения энергии, он опирался на еще более шаткий фундамент. На Земле справедливость закона была, в самом деле, очевидной, но Солнце являлось постоянным убедительным свидетельством против него.

Рассмотрим Солнце.

Самая очевидная характеристика этого тела — количество излучаемого света и тепла. Несмотря на то, что Солнце находится на расстоянии 150 000 000 км от Земли, оно освещает и согревает всю ее постоянно в течении всей истории. Один квадратный сантиметр поверхности Земли каждую минуту получает от полуденного Солнца 1,97 кал энергии в виде света и тепла. Эта величина, т. е. 1,97 кал/(см2 мин), называется солнечной постоянной.

Площадь поперечного сечения Земли в плоскости, перпендикулярной идущей от Солнца радиации, равна приблизительно 1 280 000 000 000 000 000, или 1,2·1018 см2 [5]. Следовательно, полное излучение, попадающее каждую минуту на Землю, составляет приблизительно 2,51·1018 кал. Но даже это число никоим образом не выражает всю радиацию Солнца. Солнце излучает энергию во всех направлениях, и только очень малая часть ее попадает на крошечную Землю. Вообразите огромную полую сферу с радиусом 150 000 000 км и с Солнцем в центре. Солнце освещало бы и нагревало каждую часть сферы, как Землю, а поверхность огромной сферы в два миллиарда раз превосходила бы поперечное сечение Земли. Это означает, что Солнце излучает в два миллиарда раз больше энергии, чем получает Земля. Полная энергия, излучаемая Солнцем равна 5,6·1027 кал/мин. Сколько же энергии излучило Солнце за всю историю своего существования, если каждую минуту оно излучает в среднем 5,6·1027 кал!

Тогда возникает критический вопрос: откуда берется вся эта энергия? Если закон сохранения энергии верен и для Солнца, невероятно огромные запасы энергии, извергаемые Солнцем в пространство, не могут возникать из ничего. Энергия только переходит из одной формы в другую, следовательно, солнечная радиация должна возникать за счет другой формы энергии. Но какой именно?

На первый взгляд кажется, что такой формой является химическая энергия. Горящий уголь, например, как и Солнце, выделяет свет и тепло, когда углерод угля и кислород воздуха, соединяясь, образуют двуокись углерода, Тогда, может быть, Солнце — огромный горящий кусок угля, и излучаемая им энергия получается за счет химической энергии?

Такое предположение легко опровергнуть. Химики знают совершенно точно, сколько энергии получается при сгорании данного количества угля. Предположим, что вся огромная масса Солнца (которая в 333 500 раз больше массы Земли) состоит из угля и кислорода и излучает каждую минуту 5,6·1027 кал. Солнце тогда было бы действительно горящим углем, освещающим и обогревающим Солнечную систему. Какое время горел бы этот уголь, прежде чем на Солнце осталась только двуокись углерода? Ответ звучит довольно легкомысленно — в течение полутора тысяч лет!

Это очень маленький период времени. Он может охватить лишь часть истории цивилизованного человечества (о целых эрах до нее и говорить нечего). Так как Солнце сияло с такой же силой во времена расцвета Римской империи, с какой оно светит и сейчас, без дальнейших исследований мы утверждаем, что оно не может быть горящим углем, иначе к настоящему времени оно погасло бы. Действительно, пока неизвестна химическая реакция которая снабдила бы Солнце необходимой энергией даже на короткий период существования цивилизованного человечества.

Рассмотрим некоторые альтернативы химической энергии. Одной из них является кинетическая энергия.

На Земле проявление такой энергии случается каждый раз, когда в верхние слои атмосферы влетает метеорит. Его кинетическая энергия в результате сопротивления воздуха превращается в тепло. Даже крошечный метеорит размером с булавочную головку раскаляется до такой степени, что сияет на расстоянии в несколько километров. Метеорит, весящий 1 г и движущийся с обычной для метеоритов скоростью (скажем, 30 км/сек), имеет кинетическую энергию более чем 5·1012 эрг, или около 120 000 кал. Такой же метеорит, падающий на Солнце, разгонялся бы гораздо большей гравитационной силой Солнца до гораздо большей скорости, чем на Земле, поэтому он передавал бы Солнцу значительно большую энергию. Подсчитано, что один грамм вещества, падающего на Солнце с большого расстояния, возместил бы 44 000 000 кал, потерянных Солнцем. Следовательно, если учесть всю энергию, излучаемую Солнцем, о для полной ее компенсации на него ежеминутно должно падать 1,2·1020 г метеоритного вещества, т. е. более чем сто триллионов тонн вещества!


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Нейтрино - призрачная частица атома отзывы

Отзывы читателей о книге Нейтрино - призрачная частица атома, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.