Конечно, "фильм", о котором идет речь полностью отличается от аналогов, использованных при анализе движения теннисного мяча или разбивающегося яйца в последней главе. Вероятностные волны не есть вещи, которые мы можем видеть непосредственно; не существует камеры, которая могла бы зафиксировать вероятностные волны на пленку. Вместо этого, мы можем описать вероятностные волны с использованием математических уравнений, и перед нашим мысленным взором мы можем представить простейшие из них, имеющие форму как на Рис. 4.5 и 4.6. Но единственный доступ, который мы имеем к самим вероятностным волнам, является косвенным, через процесс измерения. Это есть, как было обрисовано в Главе 4 и неоднократно было видно в рассмотренных выше экспериментах, стандартная формулировка квантовой механики, описывающая разворачивание явлений с использованием двух совершенно отличных этапов. На первом этапе вероятностная волна – или, на более точном полевом языке, волновая функция – объекта, такого как электрон, эволюционирует в соответствии с уравнением, открытым Шредингером. Это уравнение гаранирует, что форма волновой функции изменяется гладко и постепенно, почти как водяная волна изменяет свою форму, когда путешествует от одного берега озера к другому.* В стандартном описании второго этапа мы осуществляем контакт с наблюдаемой реальностью путем измерения положения электрона, и когда мы так делаем, форма его волновой функции резко и прерывисто изменяется. Волновая функция электрона больше не похожа на более привычные примеры вроде водяных волн или волн звука: когда мы измеряем положение электрона, его волновая функция вздымается пиком или, как показано на Рис. 4.7, схлопывается, падая до величины 0 везде, где частица не найдена, и возрастая до 100 процентов вероятности в единственном положении, где частица найдена измерением.
Первый этап – эволюция волновой функции в соответствии с уравнением Шредингера – математически строгий, полностью недвусмысленный и полностью принятый физическим сообществом. Второй этап – коллапс волновой функции при измерении – наоборот, является чем-то, что на протяжении последних восьми десятков лет, в лучшем случае, держит физиков в тихом смущении, а в худшем провоцирует проблемы, загадки и потенциальные парадоксы, которые разрушают карьеры. Сложность, как отмечалось в Главе 4, в том, что в соответствии с уравнением Шреднигера волновые функции не коллапсируют. Коллапс волновой функции представляет собой добавление. Оно было введено после открытия Шреднгером своего уравнения в попытке оценить, что же экспериментаторы на самом деле видят. Хотя сырая, несколлапсированная волновая функция воплощает странную идею, что частица находится и тут и там, экспериментаторы никогда не видят этого. Они всегда находят частицу определенно в том или ином положении; они никогда не видят ее частично тут, а частично там; игла в их измерительных приборах никогда не зависает в нерешительности в некоторой призрачной смеси, отмечая и эту величину и также ту величину.
То же самое происходит, конечно, при наших собственных бессистемных наблюдениях окружающего нас мира. Мы никогда не наблюдаем, чтобы кресло было и тут, и там; мы никогда не наблюдаем Луну одновременно в одной части ночного неба, а также и в другой; мы никогда не видим кота, который одновременно и жив, и мертв. Понятие коллапса волновой функции присоединяется к нашему опыту путем постулирования, что акт измерения заставляет волновую функцию отказаться от квантовой неопределенности и ввести одну из множества потенциальных возможностей (частица здесь или частица там) в реальность.
(*)"Квантовая механика справедливо имеет репутацию чего-то гладкого и постепенного; однако, как мы явно увидим в последних главах, она обнаруживает турбулентный и дрожащий микрокосмос. Причиной этого дрожания является вероятностная природа волновой функции – даже если вещи могут существовать одним способом в один момент, имеется вероятность, что они будут существенно отличаться моментом позже, – а не всегда присутствующие дрожания, характеризующие саму волновую функцию."
Загадка квантового измерения
Но как проведение измерения экспериментатором принуждает волновую функцию к коллапсу? Фактически, когда реально происходит коллапс волновой функции, и если он происходит, что реально происходит на микроскопическом уровне? Вызывают ли коллапс любое и всякое измерения? Когда происходит коллапс и как долго это длится? Поскольку в соответствии с уравнением Шредингера волновая функция не коллапсирует, какое уравнение описывает второй этап квантовой эволюции и как новое уравнение свергает шредингеровское, узурпируя его обычную нерушимую власть над квантовыми процессами? И, что важно для нашего текущего отношения со стрелой времени, в то время, как уравнение Шредингера, уравнение, которое управляет первым этапом, не делает различий между прямым и обратным направлением во времени, вводит ли уравнение для второго этапа фундаментальную асимметрию между временем до и временем после того, как измерение произведено? То есть вводит ли квантовая механика, включая ее сопряжение с повседневным миром через измерения и наблюдения, стрелу времени в основные законы физики? Как никак, мы обсудили ранее, как квантовая трактовка прошлого отличается от трактовки прошлого в классической физике и что мы подразумевали под прошлым перед тем, как отдельные измерения и наблюдения имели место. Так, делая измерения, воплощенные во втором этапе коллапса волновой функции, устанавливаем ли мы асимметрию между прошлым и будущим, между до и после того, как измерение проведено?
Эти вопросы упорно сопротивляются полному решению и они остаются спорными. Тем не менее, после десятилетий, предсказательную мощь квантовой теории тяжело скомпроментировать. Формулировка квантовой теории в виде этапа один/этапа два, даже если этап два остается таинственным, предсказывает вероятности измерений одного результата за другим. И эти предсказания подтверждены повторением заданных экспериментов снова и снова и проверкой частоты, с которой тот или иной результат найден. Фантастический экспериментальный успех этого подхода намного перевешивает дискомфорт от отсутствия точного описания того, что на самом деле происходит на втором этапе.
Но дискомфорт всегда рядом. И он означает не просто, что некоторые детали коллапса волновой функции не вполне выяснены. Проблема квантового измерения, как она называется, является предметом спора, что говорит о пределах и универсальности квантовой механики. Это просто увидеть. Подход с этапом один/этапом два вводит раскол между тем, что наблюдается (электрон, или протон или атом, например) и экспериментатором, который наблюдает. Перед тем, как экспериментатор появляется на сцене, волновая функция счастливо и плавно эволюционирует в соответствии с уравнением Шредингера. Но тогда, когда экспериментатор вмешивается с вещами для проведения измерения, правила игры неожиданно меняются. Уравнение Шредингера отбрасывается в сторону и наступает коллапс из второго этапа. И еще, раз уж нет разницы между атомами, протонами и электронами, которые составляют экспериментатора и оборудование, которое он или она использует, и атомами, протонами и электронами, которые он или она изучает, так почему же имеется разрыв в том, как квантовая механика трактует их? Если квантовая механика является универсальной теорией, которая применима без ограничений к чему угодно, наблюдаемое и наблюдатель должны рассматриваться в точности одинаковым образом.
Нильс Бор был не согласен. Он утверждал, что экспериментаторы и их оборудование отличаются от элементарных частиц. Даже если они сделаны из одинаковых частиц, они являются "большими" собраниями элементарных частиц и, следовательно, управляются законами классической физики. Где-то между мельчайшим миром индивидуальных атомов и субатомных частиц и привычным миром людей и их оборудования правила меняются, поскольку меняются размеры. Мотивировка объявления этого разделения ясна: малые частицы в соответствии с квантовой механикой могут быть локализованы в размытой смеси тут и там, тогда как мы не видим подобного поведения в большом, повседневном мире. Но где точно находится граница? И, что жизненно важно, как два набора правил согласуются, когда большой повседневный мир сталкивается с очень маленьким миром атомов, как в случае измерения? Бор настойчиво декларировал, что эти вопросы находятся за теми пределами, для которых они предназначены, вернее говоря, что они находятся вне границ, в которых он или кто-либо еще может дать ответ. И поскольку даже без обращения к ним теория дает поразительно точные предсказания, долгое время такие проблемы выпадали из списка важнейших вопросов, которые физики продвигали к решению.