В то время, когда Джаван проводил эксперименты весной 1960 г., два исследователя Bell Labs, А. Фокс и Т. Ли, стали изучать вопрос, какие моды существуют в резонаторе Фабри—Перо. Дело в том, что резонатор Фабри—Перо сильно отличается от микроволновых резонаторов в виде замкнутых полостей. Они определили вид этих мод, и их результат побудил других исследователей Bell Labs, Гэри Д. Бонда, Джеймса Гордона и Хервига Когельника, найти аналитические решения в случае зеркал сферической формы. Важность изучения оптических резонаторов для развития газовых лазеров нельзя недооценивать. До того как были получены эти результаты, газовый лазер был, в лучшем случае, маргинальным устройством, генерация которого в сильнейшей степени зависела от юстировки концевых зеркал. Теоретические исследования резонаторов со сферическими зеркалами показали, что могут быть конфигурации, относительно слабо зависящие от юстировки зеркал, а внутренние потери в резонаторе могут быть меньшими, чем в резонаторе с плоскими зеркалами. Это позволяет использовать активные среды со значительно меньшими, чем думали раньше, усилениями. От резонатора с плоскими зеркалами практически отказались, и все открытия новых газовых лазеров делались с помощью резонаторов со сферическими зеркалами.
В 1961 г. в Bell Labs началась большая программа лазерных исследований. Исследователей, занятых другими проблемами, переориентировали на новую тематику, были приняты новые сотрудники. Решение использовать в резонаторе два одинаковых сферических зеркала, расположенных в положении их фокусов (такая конфигурация называется конфокальным резонатором), показало, каких трудностей мог бы избежать Джаван, если бы использовал такой резонатор. В результате, Вильям В. Ригрод, Хервиг Когельник, Дональд Р. Хериотт и Д. Дж. Брангачио построили весной 1962 г. первый конфокальный резонатор со сферическими зеркалами, которые концентрируют свет к оси разрядной трубки, причем эти зеркала помещались вне трубки. Это позволило получить генерацию на красной линии 6328 А. Часть света неизбежно теряется при отражениях от поверхностей окон (френелевское отражение). Этих потерь, однако, можно избежать, если наклонить окна под определенным углом, называемым углом Брюстера. В этом случае для света определенной поляризации потери практически равны нулю. Такая новая конфигурация лазера показана на рис. 57.
Рис. 57. Конфокальный оптический резонатор. Трубка, в которой газ возбуждается электрическим разрядом, закрыта окошками, наклоненными под углом Брюстера. Вогнутые зеркала с равными радиусами кривизны располагаются за трубкой так, чтобы расстояние между ними было равно радиусу кривизны
Красный He-Ne-лазер стал широко применяться, и до сих пор находит использование, в частности, в медицине. Кроме того, он сильно способствует пониманию принципиальных различий между лазерным (высококогерентным) и обычным (некогерентным) светом. С помощью этого лазера легко наблюдаются явления интерференции, а также модовая структура лазерного пучка, которая легко и наглядно изменяется небольшим наклоном зеркала резонатора. Также стимулировалась разработка других, многочисленных типов лазеров.
Современный He-Ne-лазер может генерировать на одном из нескольких переходах, показанных на рис. 54. Для этого могослойные зеркала изготавливаются с максимальным отражением на нужной длине волны. Генерация получается на длинах волн 3,39 мкм, 1,153 мкм, 6328 А° и даже при использовании особых зеркал, на длинах волн 5433 А (зеленая линия), 5941 А° (желтая линия), 6120 А° (оранжевая линия).
1961 г. был годом реализации еще двух лазеров, над которыми специалисты работали с самого начала появления концепции лазера. Одним из них был цезиевый лазер. После того как Таунс и Шавлов написали свою работу, было решено, что Таунс попытается построить лазер на парах калия. Выбор был обусловлен тем, что расчеты показывали возможность работы, а также тем, что пары калия являются простым одноатомным газом с хорошо известными свойствами. Таунс хотел работать с системой, свойства которой можно было проанализировать в деталях. Позднее он говорил: «Мой стиль физики заключается в том, чтобы обдумать проблему теоретически, проанализировать ее, а затем поставить эксперимент, который должен работать. Если он не получается, вы должны заставить его заработать. Вы анализируете и усиливаете теоретические условия в лаборатории, до тех пор, пока вы не добьете проблему». Его предварительные расчеты показывали, что калиевый лазер будет иметь высокомонохроматическое излучение, что было бы весьма полезно для специальных применений. Но были и недостатки: малый коэффициент полезного действия (около 0.1%) и выходная мощность в доли милливатта.
В то время как Таунс сконцентрировался на парах калия, Шавлов в Bell Labs, изучая рубин, пришел к заключению, что его линии, которые позднее Мейман использовал для создания первого лазера, не годятся. Таунс запросил и получил финансирование от Военно-воздушного ведомства. Это позволило ему привлечь к проекту двух аспирантов: Г. Камминса и И. Абелла.
Однако в работе возник ряд проблем. Пары калия вызывали потемнение стекла разрядной трубки и действовали химически на вакуумную аппаратуру. В конце 1959 г. Таунс попросил О. Хивенса, британского специалиста по диэлектрическим зеркалам, приехать и помочь, а также решил использовать пары цезия вместо калия, накачивая их гелиевой лампой.
Рис. 58. Энергетические уровни цезия и гелияОдна из узких линий поглощения атома цезия имеет в точности такую же энергию, как одна из узких линий гелия. Поэтому можно использовать свет гелиевой лампы, испускаемой на этой длине волны (389 нм), для селективной накачки уровня цезия и заселить его больше, чем нижние уровни. Таким образом, можно получить инверсную населенность (рис. 58). После сообщения Меймана Таунс перевел Абелла на работу с рубином, а Камминс продолжал работу с цезием. Цезиевый лазер был запущен в TRG между концом 1961 г. и первыми месяцами 1962 г. Полом Рабиновичем, Стефеном Джакобсом и Голдом. Он испускал излучение на 3,20 и 7,18 мкм. Это был один из лазеров, запущенных благодаря конфокальным зеркалам. Исследователи из TRG также начали с калия, но после одного из семинаров, на котором Хивенс сказал, что цезий лучше, также перешли на этот материал и оказались первыми, стремясь показать, что миллион долларов, выделенный им, потрачен не напрасно. Они в марте 1961 г. добились получения инверсии, и получили генерацию в начале 1962 г.
Этот лазер был скорее любопытен, чем практичен. В настоящее время генерацию на этих длинах волн более легко получают другими методами, к тому же цезиевые пары ядовиты.
Другой лазер, запущенный в 1961 г. и все еще остающимся одним из главных, — лазер на неодимовом стекле. В 1959—1960 гг. Американская Оптическая Компания также заинтересовалась лазерными исследованиями, которые проводил один из ее ученых, Элиас Снитцер. Эта компания первоначально концентрировалась на оптических приборах и офтальмологических изделиях. Она также была сильна в области изготовления стекла и изделий из него. В течение 1950-х гг. компания решила расширить производство и, поэтому запустила исследовательские проекты в новых областях, таких как военная электрооптика и волоконная оптика. Элиас Снитцер был принят в начале 1959 г. в исследовательскую группу и начал свои работы по распространению электромагнитных волн в оптических волокнах. Для компании эта работа принесла патенты в области волоконной оптики и укрепила ее имидж в этой области в научном мире. Снитцер уловил связи между исследованиями оптических волокон и лазерными работами. Поскольку стеклянное волокно может поддерживать моды электромагнитного излучения, то его можно превратить в лазерный резонатор, если на его концах разместить зеркала. Это предположение было интересно, поскольку в научной среде были сомнения, будет ли работать резонатор Фабри—Перо. Стекло само по себе может стать лазерным материалом, если его допировать подходящим веществом, таким как самарий или иттербий, и накачивать требуемые уровни с помощью некогерентного света, посылаемого либо через поверхность, либо через торец волокна. Снитцер полагал, что он может даже сконцентрировать больше света накачки в волокне, если покроет его тонким слоем стекла с несколько отличающимся показателем преломления.
В начале 1960 г. Снитцер с двумя сотрудниками начал исследования серии стеклянных волокон, допированных ионами, имеющими линии люминесценции в видимой области. Стекло было необычным выбором. Все исследованные материалы были либо газами, либо кристаллами. После успеха Меймана Снитцер попробовал волокна рубина. До этого он использовал ртутные лампы большого давления, непрерывно испускающие свет. Теперь он приобрел лампы-вспышки. Группа исследовала 200 волокон. В конце 1960 г. оба помощника Снитцера были переведены на закрытый проект ВВС, имеющий цель создать лазерный излучатель с солнечной накачкой. Снитцер остался один и решил перейти от видимого диапазона к инфракрасному. Это решение означало замену допированных материалов. В инфракрасной области можно было использовать редкие земли: неодим, празеодим, гольмий, эрбий и тулий. Снитцер также решил оставить волокна и сосредоточиться на простом стержне допированного стекла. В октябре 1961 г. он получил лазерную генерацию на стержне стекла, допированного неодимом.