Квантованные колебания решётки называются фононами. Такое название связано с тем, что фононы в некоторых фундаментальных аспектах квантовой теории напоминают фотоны. Каждый фонон является делокализованной волной колебаний, которая распространяется на всю кристаллическую решётку. Волны решётки могут образовывать более или менее локализованные волновые пакеты за счёт суперпозиции большого набора длин волн. Более или менее локализованный фононный волновой пакет совершенно аналогичен фотонному или электронному волновому пакету, которые упоминались чуть выше, а подробно обсуждались в главе 6. Фононы — это движущиеся волновые пакеты механической и тепловой энергии. Фононный волновой пакет можно рассматривать как движущуюся область более или менее локализованного дрожания атомов.
Электронные и фононные волновые пакеты взаимно рассеиваются
Электронный волновой пакет, который ускоряется в положительном направлении, может провзаимодействовать с фононом. Фонон заставляет двигаться положительно заряженные атомные ядра. Отрицательно заряженные электроны испытывают влияние со стороны этих движущихся положительных зарядов. Взаимодействие электронов и протонов называется рассеянием и схематически изображено на рис. 19.7.
Рис. 19.7. Схема электрон-фононного рассеяния. Взаимодействие электрона и фонона вызывает изменение направления движения волновых пакетов
Электронные и фононные волновые пакеты распространяются в определённых направлениях. Электрон, ускоряемый электрическим полем, «сталкивается» с фононом. Происходит рассеяние, после которого в общем случае оба волновых пакета начинают двигаться по новым направлениям. Электрон вновь будет ускоряться электрическим полем в положительном направлении. Через некоторое время он опять встретится с фононом и рассеется. При каждом рассеянии электрон отдаёт фонону часть своей кинетической энергии, полученной при ускорении электрическим полем (за счёт источника напряжения).
Акты рассеяния приводят к двум эффектам. Во-первых, они мешают электронам двигаться прямо к положительному полюсу батареи. Во-вторых, приводят к увеличению кинетической энергии фононов. Электроны теряют энергию, а фононы её приобретают. Электрон-фононное рассеяние приводит к уменьшению электропроводности металлов, поскольку электроны постоянно попадают в столкновения, сбивающие их с направления на положительный конец провода, к которому они стремятся. Это называется электрическим сопротивлением. При очень низкой температуре фононов мало, так что электроны могут пройти большой путь между двумя актами рассеяния. В результате им легче достичь положительного конца. С повышением температуры становится всё больше и больше фононов, поскольку фононы — это тепло. При высокой температуре электроны проходят меньший путь, прежде чем их направление изменится, и это мешает им двигаться к положительному электроду. В результате при повышении температуры электропроводность уменьшается (сопротивление возрастает).
Электрон-фононное рассеяние приводит к нагреванию металла
Поскольку акты рассеяния приводят к увеличению кинетической энергии фононов, они повышают температуру металла. Температура — это мера тепла, содержащегося в веществе. Тепло — это кинетическая энергия движения атомов. Если множество электронов движется сквозь металл, испытывая рассеяние, то провод получает много дополнительного тепла и его температура повышается. Однако с повышением температуры фононов и актов рассеяния становится ещё больше, и температура продолжает повышаться.
Этот процесс можно наблюдать при включении электрической печи: на то, чтобы её элемент разогрелся до красного свечения, требуется некоторое время. Когда вы включаете печь, её нагревательный элемент находится при комнатной температуре. С появлением электрического тока начинают происходить электрон-фононные рассеяния, повышающие температуру. Это означает, что появится ещё больше фононов и будет ещё больше актов рассеяния, а в проводе выделится ещё больше тепла. Провод достигнет постоянной высокой температуры, определяемой силой тока (выбранной регулятором печи) в начальный момент при комнатной температуре, когда печь только включили.
В нормальном металле электроны подвергаются электрон-фононному рассеянию при любой температуре. Поэтому кусок провода имеет электрическое сопротивление при любой температуре, отличной от абсолютного нуля (0 K). При абсолютном нуле тепла нет, а значит, нет и фононов. Однако достичь абсолютного нуля невозможно. Используя крайне специфические экспериментальные методы, можно достичь очень низких температур, например одной миллионной доли градуса над абсолютным нулём, но даже при этой невероятно низкой температуре существует некоторое количество фононов и происходят акты электрон-фононного рассеяния. Кроме того, если начать пропускать сколько-нибудь значительный ток по куску обычного провода, охлаждённого до очень низкой температуры, он нагреется. Как упоминалось в главе 17, линии электропередачи, идущие от электростанций к городам, теряют много электроэнергии. Теперь мы понимаем почему. Это связано с электрическим сопротивлением проводов, то есть с электрон-фононным рассеянием.
Вещества, которые не имеют электрического сопротивления при отличной от абсолютного нуля температуре, называются сверхпроводниками, а течение электронов по сверхпроводящему куску провода называется сверхпроводимостью. В металлах сверхпроводимость возникает только при очень низких температурах. Голландский физик Хейке Камерлинг-Оннес (1853–1926) открыл сверхпроводимость в 1911 году, когда охладил ртуть до 4 K (−269 °C). Он обнаружил, что её сопротивление упало до нуля. Приведём также примеры некоторых других металлов и максимальные значения температуры, при которых они являются сверхпроводящими: ниобий — 9,26 K, свинец — 7,19 K, ванадий — 5,3 K, алюминий — 1,2 K и цинк — 0,88 K.
Явление сверхпроводимости смогли объяснить лишь десятки лет спустя. В 1972 году три американских физика — Джон Бардин (1908–1999), Леон Купер (р. 1930) и Джон Шриффер (р. 1931) — получили Нобелевскую премию по физике
«за создание теории сверхпроводимости, обычно называемой БКШ-теорией».
БКШ-теория была разработана в 1957 году и является исчерпывающим квантовомеханическим объяснением электрон-фононного взаимодействия при низкой температуре. В 1956 году Леон Купер показал, что электрон-фононные взаимодействия могут приводить к спариванию электронов. Два электрона в некотором смысле объединяются, хотя физически они находятся далеко друг от друга. В БКШ-теории была использована эта идея и показано, что такие куперовские пары не испытывают обсуждавшегося выше электрон-фононного рассеяния, которое служит причиной электрического сопротивления. Когда нет электрон-фононного рассеяния, электроны движутся сквозь металл, не испытывая сопротивления, даже при температуре, отличной от абсолютного нуля. Поскольку сопротивление отсутствует, то нет и потерь электроэнергии, несмотря на прохождение сильного тока.
Сверхпроводники уже сегодня имеют множество применений, и не вызывает сомнения появление в будущем ещё более важных и широко распространённых приложений. Для магнитно-резонансной томографии (МРТ) требуются очень мощные магниты. Большой цилиндр МРТ, внутрь которого помещают пациента, — это сверхпроводящий электромагнит. Магнитное поле появляется, когда электрический ток течёт по свёрнутому в катушку проводу. Чтобы получить сильное магнитное поле, необходим очень сильный ток и большое количество провода, свёрнутого в катушку. До появления сверхпроводящих электромагнитов не удавалось получить достаточно сильных магнитных полей. Провод слишком сильно нагревался, и его охлаждение становилось огромной проблемой. Теперь провод делают из сверхпроводящего металла, такого как ниобий. Когда в катушке запускается течение электронов, два её конца соединяют. Электроны продолжают кружиться по катушке. Поскольку сопротивления нет, то нет и потерь энергии, а значит, не требуется подводить к катушке дополнительное электричество. Без сверхпроводимости у нас не было бы МРТ.
Ещё одна большая надежда — это сверхпроводящие линии электропередачи. Такие линии электропередачи полностью исключили бы потери электроэнергии. Появилась бы возможность передавать электричество на гораздо большее расстояние, чем сегодня. Проблема состоит в том, что металлические сверхпроводники должны быть настолько холодными, что использовать их для линий электропередачи непрактично. Существуют новые типы высокотемпературных сверхпроводящих материалов. Их открыли в 1986 году Карл Мюллер (р. 1927) и Йоханнес Беднорц (р. 1950). Они получили Нобелевскую премию по физике в 1987 году