MyBooks.club
Все категории

Марио Бертолотти - История лазера

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Марио Бертолотти - История лазера. Жанр: Физика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
История лазера
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
86
Читать онлайн
Марио Бертолотти - История лазера

Марио Бертолотти - История лазера краткое содержание

Марио Бертолотти - История лазера - описание и краткое содержание, автор Марио Бертолотти, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга, которую Вы взяли в руки — редкий сплав добротного изложения основ современной физики и ее истории. История науки предстает здесь в неразрывной связи драмы идей в познании природы и судеб конкретных людей. Все эти выдающиеся исследователи были захвачены в круговорот жестокой истории XX века, которой в книге уделено немало страниц.Автору удалось совместить рассказы о жизненном пути замечательных личностей с пристальным, шаг за шагом, анализом гипотез, теории и эксперимента.Для широкого круга читателей, интересующихся современной физикой.

История лазера читать онлайн бесплатно

История лазера - читать книгу онлайн бесплатно, автор Марио Бертолотти

«находясь в темной комнате и сделав малое отверстие в ставне, чтобы пропустить достаточно света Солнца, я разместил мою призму так, чтобы свет мог быть преломлен к противоположной стене. Первым очень приятным ощущением было увидеть яркие и интенсивные цвета, полученные в результате этого; но после более внимательного рассмотрения я к своему удивлению обнаружил, что они имеют вытянутую форму, хотя по закону преломления они должны были бы иметь круглую форму».

Тонкий луч солнечного света, который проходил через круглое отверстие, сделанное Ньютоном, имел круглое сечение, и согласно закону Снеллиуса должен был бы лишь смещаться, но не изменять свою форму.


Ньютон и свет

Ньютон сообщает нам, что, начав изучать это странное явление и вычисляя отношения между углом падения белого света на призму и углами преломления цветных лучей, выходящих из нее, сразу же обнаружил, что это отношение различно для разных цветов. Повторяя эксперимент и вводя вторую призму, он отметил, что каждый из основных цветов имеет свое отношение. Он заключил, что белый свет является «неопределенной совокупностью различных цветных лучей».

При описании этого эксперимента Ньютон совершает мистификацию; ключевой эксперимент (experimentum cruris, как его называет Ньютон), на котором он так сильно настаивает, был в значительной степени вымыслом, придуманным позднее для объяснений его рассуждений. На самом деле мы знаем, что Ньютон пришел к своим результатам более сложным путем, который мы не станем прослеживать.

В заключение мы можем согласиться с Ньютоном, что угол преломления зависит от цвета света и что белый свет Солнца является таковым из-за того, что он содержит все цвета, и может быть разложен на свои разные цвета путем преломления, совершаемого призмой. Поскольку, как мы указывали ранее, угол преломления зависит от скорости распространения света, можем также сказать, что результаты Ньютона означают, что скорость распространения зависит от цвета света.

В настоящее время для явления, согласно которому скорость распространения света зависит от его цвета, принято название «дисперсия света», а «дисперсионная сила» описывает способность конкретного материала разлагать свет на различные цвета, наблюдаемые на экране, с помощью преломления в призме. Причина, почему свет каждого цвета распространяется с разной скоростью в одном и том же веществе, оставалась тайной вплоть до начала 20 столетия.

Преодолев свое странное нежелание публиковать свои открытия, Ньютон, обнародовал свои заключения в 1672 г., отправив письмо в Королевское Общество, и мы полагаем, что будет интересно вспомнить, как это случилось. Теория цветов, изложенная Робертом Гуком в Micrographia, не удовлетворяла Ньютона. Гук утверждал, что «синий цвет света получается из-за ощущений на сетчатке с помощью сложного импульса, чья слабая часть предшествует отстающей более сильной части», а красный получается из-за сложного импульса противоположного порядка. Ньютон в своей книге Quaestiones сразу же опроверг эти два фундаментальных предположения Гука и провел эксперименты, которые мы уже описали. Эти эксперименты показали, что белый свет является некоторой суммой цветных лучей, которые разбрасываются путем преломления в призме. Позднее он обнаружил, что этот результат имеет важное практическое значение. При работе с телескопами было установлено, что сферические линзы не отклоняют параллельные лучи, идущие от звезд, таким образом, чтобы собрать их в совершенный фокус (т.е. в точку). В своей работе Dioptrique Декарт показал, что линзы эллиптической или гиперболической формы могут, в согласии с законом преломления, собирать преломленные параллельные лучи в совершенный фокус (т.е. в точку). Ньютон начал исследовать, как можно было бы изготовить такие поверхности, и обнаружил, что получается окрашенное изображение (сегодня этот дефект называется «хроматическая аберрация») из-за того, что синие лучи отклоняются сильнее, чем красные. Тогда он прекратил свою работу по несферическим линзам и никогда не возвращался к ней, решив построить отражательный телескоп, в котором увеличенное изображение получалось за счет использования вогнутых зеркал вместо линз, используемых в телескопе Галилея. Этот телескоп Ньютона имел увеличение в 40 крат. Позднее он построил второй телескоп с увеличением 150 и демонстрировал его в Кембридже. Сведения об этом дошли до Королевского Общества, которое просило ознакомиться с телескопом и в конце 1672 г. получило его от Барроу. Телескоп произвел такую сенсацию, что в январе 1672 г. Генри Олденбург, секретарь Королевского Общества, писал Ньютону, превознося его изобретение и заявляя, что Общество хотело бы послать чертеж Гюйгенсу, чтобы предотвратить присвоение другими людьми идеи Ньютона. Ньютон дал свое согласие и 6 февраля отправил в Общество доклад о своей теории цветов, в котором объяснял, как эта теория привела его к изобретению отражательного телескопа.

Вначале он не формулировал каких бы то ни было гипотез по теории света, но позднее, под влиянием критики Гука, Гюйгенса и др., на которую резко реагировал, вынужден был обозначить свою позицию. В своей работе, Royal Society Philophical Transactions, он принимал во внимание противников своей корпускулярной гипотезы природы света, не исключающей, однако, волновой альтернативы. Резкое противодействие Гука, продолжающееся в течение многих лет, привело к тому, что он долго ничего не публиковал по оптике. Так работа Гука Opticks была опубликована только в 1704 г., после его смерти.

В то время когда он был назначен профессором в Кембридже осенью 1669 г., Ньютон выбрал темой своих инагурационных лекций, прочитанных между 1670 и 1672 гг., теорию цветов и преломлений, которую он разработал в предыдущие пять лет. Эти Lectiones opticae, написанные на латыни, стали первым физическим трактатом и наиболее исчерпывающим изложением его теории цветов. Эти лекции были использованы как основа для его первой книги Opticks, написанной 20 годами позднее. Сравнивая Lectiones с Optics, мы можем проследить эволюцию взглядов Ньютона. В своих Lectiones Ньютон старался развить математическую науку цветов, в то время, как он сам провозглашал, Optics является экспериментальным учебником: «Мой замысел этой Книги не объяснять свойства света гипотезами, а выдвинуть предположения и проверить их здравым смыслом и экспериментами».


Великая революция Ньютона в физике

Позднее, в 1679 г., Ньютон продолжил свои исследования тел, подверженных действию гравитационных сил, и полностью решил эту проблему. Фактически интуитивные предположение сделанные им в 1666 г., не были полностью разработаны, поскольку он не располагал точными измерениями относительно Земли, из которых можно было рассчитать притяжение между Землей и Луной. После того как француз Жан Пикар (1620—1682) измерил длину меридиана между Амьеном и Мальвузином (1669—1670), что позволило точно оценить радиус Земли, Ньютон смог вернуться к своим первоначальным идеям, найдя прекрасное подтверждение в экспериментах. Он отвергал картезианское пространство, связанное с механическими гипотезами, но принимал принцип Декарта движения по инерции в вакууме, который Галилей не вполне явно ввел в своей космологической системе» Ньютон принял этот принцип как фундаментальную основу его законов в качестве первого: «Каждое тело пребывает в состоянии покоя или равномерного, прямолинейного движения, до тех пор, пока действие внешних сил не выведет его из этого состояния».

Принцип инерции, полностью сформулированный им в 1680 г., был использован для объяснения движения небесных тел в пространстве. Инерция позволяет им продолжать бесконечно их прямолинейное движение, а сила гравитации между двумя массами, пропорциональная массам и обратно пропорциональная квадрату расстояния между ними, заставляет каждую планету искривлять своя траекторию по эллипсу.

Сложная аксиоматическая конструкция, устанавливающая фундаментальные основы «классической» механики, разработка теорем, относящихся к круговым и эллиптическим движениям, а также дифференцирование центральных сил, Все это было выполнено Ньютоном между 1684 и 1686 гг.

Представление и опубликование его принципиальной работы, Philosophiae naturalis principia mathematical в 1687 г. было поддержано и оплачено из собственных средств Эдмундом Галлеем, так как Королевское Общество, которое обещало оплатить расходы, испытывало финансовые трудности. Галлей (1656—1742), который позднее был назначен Королевским Астрономом в Гринвиче, был знаменит своими изучениями комет. Он открыл, что события 1456, 1531, 1607 и 1682 гг. были вызваны одной и той же кометой, которая получила его имя и которая движется по сильно вытянутому эллипсу с периодом около 72 года. Последний раз эта комета появилась в 1985 г.

В первом томе содержались законы движения, криволинейные и эллиптические движения, законы столкновений, дифференцирование центральных сил и движение маятника. Второй том был посвящен движению твердых тел в сопротивляющихся средах и означал детальное и систематическое опровержение декартовой физики пространства. Эта физика изменяет реальное поведение тел, движущихся внутри жидкостей, и делает недоказуемым физические основы законов Кеплера. Оба эти тома имели рациональную аксиоматическую и дедуктивную структуру. Третий том начинался с этих же посылок, и в нем индуктивно разрабатывалось устройство Вселенной. Автор простым и изящным способом переформулировал гелиоцентрическую теорию Коперника, добавляя самые новейшие астрономические данные; после демонстрации вывода законов Кеплера из принципов, сформулированных Ньютоном, он разработал теорию движения Луны, приливов и рассчитал относительные траектории комет, а также проблему трех тел.


Марио Бертолотти читать все книги автора по порядку

Марио Бертолотти - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


История лазера отзывы

Отзывы читателей о книге История лазера, автор: Марио Бертолотти. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.