Если мы предположили, что существует множество вселенных, то почему бы не упорядочить их с помощью космической эволюции?
К естественному космическому отбору мы не вполне можем применить положения дарвинистской теории. Описывая сущность естественного отбора, биологи подразумевают, что развитие популяции ограничено определенными внешними факторами. Изоляция отдельных вселенных делает, конечно, невозможной эволюцию в биологическом смысле этого слова.
Хотя данная гипотеза и умозрительна, назвать ее ненаучной нельзя. Уже сейчас многие специалисты уверены, что Большой взрыв нельзя считать уникальным явлением и что наша Вселенная является всего лишь одной среди множества ей подобных миров. Идея космической эволюции становится лишь дальнейшим развитием уже бытующих в ученой среде идей.
Конечно, здесь есть и целый ряд спорных моментов. Ведь получается, что лишь вселенные, содержащие большое число источников миров, благоприятны для развития жизни. Однако вполне можно представить себе миры, которые усиленно «клонируются» и все же остаются необитаемыми. В частности, вселенные могут быть насыщены замерзшими звездами, но это совсем не означает, что в них непременно зародится жизнь. И все же весьма вероятно, что на одной из стадий естественного космического отбора где-то случайно зародится жизнь – ведь появилась же наша, населенная нами.
В таком случае, если всей нашей Солнечной системе суждено исчезнуть внутри черной дыры, притаившейся в центре нашей Галактики, то сингулярный объект, в каковой она превратится, станет со временем зародышем новой Вселенной. В этом новом мире однажды снова появятся на свет разумные существа, которые в один прекрасный день снова зададутся теми же самыми вопросами. И ответы на эти вопросы когда-нибудь снова отыщут в научно-популяр ной книге. Только в которой по счету Вселенной это случится?
Глава 6. Гравитационный прибой
…Как следует из специальной теории относительности, ничто не может двигаться со скоростью, превышающей световую. Размышляя над этой проблемой, Эйнштейн представил себе луч света, искривляющийся при прохождении у края Солнца. Материя как-то изгибает пространство, и другая материя должна двигаться в таком пространстве «естественно» – так, как мы это наблюдаем. Он решил, что наиболее естественным был бы кратчайший путь между двумя заданными точками пространства. Иными словами, Солнце искривляет пространство вокруг себя, и планеты движутся эллиптическими орбитами, но в искривленном пространстве они представляют собой прямые линии.
Далеко не все соглашались с этими странными идеями Эйнштейна.
Б. Паркер. Мечта Эйнштейна: В поисках единой теории строения Вселенной
Со времен античных натурфилософов-метафизиков пространство считалось математической абстракцией, всегда и всюду одинаковым, не зависящим от заполняющих его тел, и никак не проявляющим себя в материальном мире. В этом идеализированном пространстве более двух тысячелетий успешно царствовала геометрия Евклида. Первым, кто высказал мысль о возможности построения других геометрий, столь же последовательных и непротиворечивых, как и евклидова, был выдающийся математик Николай Лобачевский. К сожалению, его удивительные работы настолько опередили свою эпоху, что не нашли понимания даже у выдающихся математиков того времени.
Лобачевский не просто первым создал теорию неевклидовой геометрии, но и поставил вопрос о реальной геометрии нашего мира. Какова она – плоская евклидова или же искривленная неевклидова? Он попытался практически ответить на этот вопрос, проведя ряд астрономических измерений суммы углов треугольников, составленных из далеких звезд. Однако отсутствие разработанной методологии подобных наблюдений и их низкая точность не позволили получить какой-либо результат.
Работы Лобачевского и независимые исследования одаренного венгерского математика Яноша Бойяи послужили надежной основой для всех последующих концепций искривленного пространства, в том числе созданных немцем Бернхардом Риманом. Этот теоретик создал математический аппарат для анализа самых разнообразных пространств. В его статьях пространство представало и изогнутым, и скрученным с разрывами и склейками, и даже многомерным. Теория Римана во многом вдохновляла работы математика и литератора Льюиса Кэрролла.
Именно с помощью неевклидовой геометрии теория релятивистской гравитации – общая теория относительности – описывает наш мир.
Оригинальный математический аппарат неевклидовой геометрии позволил Эйнштейну далеко продвинуться в понимании сущности всемирного тяготения. Именно таким образом великий теоретик пришел к парадоксальной идее, составившей основу второй части релятивистской концепции: связать силу тяготения с кривизной нашего пространства. Надо заметить, что основные уравнения общей теории относительности впервые вывел Давид Гильберт. Правда, он пришел к сущности своих знаменитых уравнений, составивших «пространство Гильберта» своим собственным путем в результате исследований, которые повлияли на современную математику не меньше, чем идеи теории относительности на физику. Любопытно и другое: Гильберт и Эйнштейн посвятили свою жизнь поискам наиболее общих принципов организации мироздания. Причем, если Гильберт искал единые основы мира математических идей, то жизненным идеалом Эйнштейна было создание теории некоего единого поля. Из этой «теории всего» можно было бы как частный случай вывести существование всех известных частиц и сил. Эта «чаша Грааля» современной физики до сих пор остается недостижимой, но ее поиски ведутся весьма интенсивно, причем как физиками-теоретиками, так и экспериментаторами.
Не так давно научный мир потрясла очередная сенсация. Речь идет об открытии следов реликтовых гравитационных волн, оставшихся от эпохи Большого взрыва. Сенсационное открытие состоялось в рамках международной программы Гарвард-Смитсоновского центра астрофизики Background Imaging of Cosmic Extragalactic Polarization (BICEP) в самой необычной обсерватории Земли, расположенной на антарктической станции «Амундсен-Скотт». Именно там природа создала подходящие условия для наблюдений, крайне иссушив и проморозив атмосферу.
Почему же это открытие вызвало такой ажиотаж среди астрономов и физиков?
Гравитационные волны… Эти загадочные порождения поля всемирного тяготения возникли столетие назад на использованном почтовом конверте. Именно так небрежно великий Эйнштейн записывал гениальные идеи, случайно пришедшие в голову. Когда создатель теории относительности обнаружил формулу для гравитационных волн, никто не сомневался, что вскоре экспериментаторы откроют новые удивительные свойства пространства – времени. Однако шло время, но крепкий орешек «гравитационного прибоя Вселенной» никак не поддавался усилиям ученых. Правда, в мировых СМИ изредка появлялись заявления, объявлявшие об очередном открытии. Увы! Все они так и не нашли подтверждения. Сюда же следует отнести и несостоявшиеся сенсации о различных проявлениях левитации, антигравитации и создании всяческих «гравицап»…
Между тем количество попыток открыть «дрожь пространственно-временной матрицы» отнюдь не уменьшается, скорее даже наоборот: возникло целое полуофициальное направление экспериментальной астрономии – гравитационно-волновая астрофизика. И хотя эта область науки еще мало освоена, ее исследователи уверенно делают первые решительные шаги, опираясь на многие косвенные данные о гравитационном колебании космоса. К сожалению, сами принципы детектирования волн тяготения требуют создания дорогостоящих циклопических сооружений и систем, на что энтузиасты гравитационного поиска приводят исторические примеры развития фундаментальных областей физики, изменившие лик цивилизации. Действительно, ведь когда-то даже самые светлые энциклопедические умы не осмеливались предсказать, что забавные опыты с «янтарной электрической субстанцией» в конечном итоге приведут к XIX веку пара и электричества, не говоря уже о последующих столетиях атомных электростанций, лазеров и солнечных батарей.
Когда-то выдающийся французский математик и натурфилософ Пьер-Симон Лаплас, отстаивая жесткую связь между всеми элементами мироздания, заметил, что даже взмах руки влияет на движение звезд. Современный физик перефразировал бы: взмахните рукой – и по всей Вселенной побегут гравитационные волны!
Теоретически это так, но их регистрация действительно составляет труднейшую техническую проблему, ведь гравитационные «приливы» и «отливы» на 40 порядков (!) уступают тем же электромагнитным волнам. Продолжая рассчитывать мощность оптимальной гравитационной волны, которая бы заставила ощутимо вибрировать приемник наподобие пустой железнодорожной алюминиевой цистерны, мы получим околосветовую звездную карусель. Жаль, но подобные небесные феномены астрономы пока еще не открыли…