MyBooks.club
Все категории

Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл. Жанр: Физика . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Абсолютный минимум. Как квантовая теория объясняет наш мир
Дата добавления:
17 сентябрь 2020
Количество просмотров:
239
Читать онлайн
Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл

Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл краткое содержание

Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл - описание и краткое содержание, автор Файер Майкл, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Абсолютный минимум. Как квантовая теория объясняет наш мир читать онлайн бесплатно

Абсолютный минимум. Как квантовая теория объясняет наш мир - читать книгу онлайн бесплатно, автор Файер Майкл

Квантовое число

Число, определяющее состояние квантовомеханической системы. Для полного описания состояния системы может потребоваться более одного квантового числа. В атоме каждый электрон имеет четыре квантовых числа: n, l, m и s, которые могут принимать лишь определённые значения. Квантовые числа возникают из математического описания квантовомеханических систем.

Кинетическая энергия

Энергия, связанная с движением. Движущаяся частица обладает кинетической энергией, равной половине произведения её массы на квадрат её скорости: Ek=½mV2.

Классическая механика

Теория вещества и света, разработанная до появления квантовой механики. Рассматривает размер как относительную величину и не может описывать абсолютно малые частицы (электроны, фотоны и т. п.). Это мощная теория, которая безупречно работает при описании больших объектов — мостов, самолётов, траекторий ракет.

Классические волны

Волны, подобные волнам на воде или звуковым волнам, которые можно описывать с помощью классической механики. Электромагнитные волны, которые являются описанием света в классической механике, также относятся к категории классических волн. Классическое описание света как волн хорошо работает для радио и других типов волн, но не может корректно описать корпускулярную природу света (фотонов), ответственную за такие явления, как фотоэлектрический эффект.

Ковалентная связь

Химическая связь, которая удерживает атомы вместе за счёт того, что они совместно используют электроны.

Коллапс волновой функции

Состояние системы часто является суперпозицией волновых функций. Каждая волновая функция соотносится с определённым значением наблюдаемой величины, например энергии. Поскольку суперпозиция состоит из множества волновых функций, она ассоциирована с множеством значений наблюдаемой величины. Когда выполняется измерение, система переходит из состояния суперпозиции волновых функций к одной волновой функции с одним значением наблюдаемой величины (например, энергии). Об этом говорят, что измерение вызывает коллапс волновой функции из состояния суперпозиции в чистое состояние с одним значением наблюдаемой величины. Невозможно заранее сказать, в какое состояние сколлапсирует суперпозиция. Поэтому невозможно предсказать, какое значение измеряемой величины будет получено.

Конструктивная интерференция

Волны объединяются (складываются друг с другом) таким образом, что общая амплитуда новой волны возрастает. Для волн разной длины конструктивная интерференция происходит только в некоторых областях пространства. За счёт конструктивной интерференции волна может быть большой в одной области и сходить на нет в остальных местах.

Кулоновское взаимодействие

Взаимодействие между электрически заряженными частицами, которое убывает с увеличением расстояния. Взаимодействие уменьшается обратно пропорционально квадрату расстояния. Кулоновское взаимодействие заставляет противоположно заряженные частицы (такие, как электрон и протон) притягиваться друг к другу; одинаково заряженные частицы, наоборот, отталкиваются (два электрона или два протона).

Молекулярная орбиталь

Волновая функция для молекулы, составленная из комбинации атомных орбиталей (атомных волновых функций), которая распространяется на всю молекулу. Молекулярные орбитали (МО) могут быть связывающими (связывающие МО). Электроны, находящиеся на связывающих МО, уменьшают энергию молекулы. Молекулярные орбитали также могут быть разрыхляющими (разрыхляющие МО). Электроны, находящиеся на разрыхляющих МО, увеличивают энергию молекулы. Для получения устойчивой молекулы на связывающих МО должно быть больше электронов, чем на разрыхляющих МО.

Нанометр

Единица длины, равная одной миллиардной доле метра (10−9 м).

Неподелённая пара

Пара электронов в молекуле, которая занимает атомную орбиталь, но не участвует в образовании химической связи. Неподелённые пары электронов не используются атомами совместно.

Одиночная связь

Химическая связь, которая удерживает вместе два атома за счёт одной совместно используемой пары электронов.

Оптический переход

Изменение состояния с одного энергетического уровня на другой в атоме или молекуле, вызванное поглощением или излучением света.

Орбиталь

Другое название для квантовомеханической волновой функции, описывающей электрон или пару электронов в атоме или молекуле. Атом обладает атомными орбиталями, а молекула — молекулярными орбиталями.

Основное состояние

Самое низкое энергетическое состояние атома или молекулы. Возбуждённое состояние порождается, когда атом или молекула, находясь в основном состоянии, поглощает фотон с частотой, подходящей для перевода системы на энергетический уровень выше минимального, то есть основного, состояния. Возбуждённое состояние может порождаться теплом и другими механизмами передачи энергии атому или молекуле.

Поглощение света

Процесс, при котором количество света уменьшается, а энергия объекта увеличивается. Свет (фотоны, частицы света) определённой частоты (цвета) заставляет объект перейти в квантовое состояние с более высокой энергией. Это увеличение энергии объекта в точности совпадает с уменьшением энергии света. Поглощение света объектами обусловливает их цвет.

Постоянная Планка

Фундаментальная постоянная квантовой теории, обозначаемая буквой h. Она входит во многие математические уравнения, используемые в квантовой механике. Например, в соответствии с уравнением Е=hν энергия равна произведению частоты (ν) и постоянной Планка. Значение постоянной Планка составляет: h=6,6∙10−34 Джсек. Планк ввёл эту постоянную в 1900 году в своём объяснении черноте́льного излучения.

Потенциальная яма

Область пространства, в которой энергия уменьшается вследствие какого-либо типа притягивающего взаимодействия. Яма в земле является гравитационной потенциальной ямой. Мяч падает на её дно, уменьшая свою гравитационную потенциальную энергию. Чтобы поднять мяч из ямы, необходимо затратить энергию. Электроны удерживаются атомами в кулоновской потенциальной яме, то есть за счёт электрического притяжения отрицательно заряженных электронов к положительно заряженным ядрам. Требуется затратить энергию, чтобы оторвать электрон от атома. Затратив достаточное количество энергии, можно поднять электрон из кулоновской потенциальный ямы, созданной притяжением положительно заряженного ядра.

Принцип запрета Паули

Принцип, согласно которому на одной атомной или молекулярной орбитали может находиться не более двух электронов. Если на одной орбитали находятся два электрона, то они должны иметь противоположные спины, то есть разные электронные квантовые чи́сла s (одно +½, а другое −½). Принцип запрета Паули важен при определении структуры Периодической таблицы элементов и свойств атомов и молекул.

Принцип неопределённости Гейзенберга

Нельзя одновременно точно знать импульс и положение частицы. Если импульс частицы известен точно, то её положение совершенно неопределённо, то есть не может быть никакой информации о её местоположении. Если же точно известно её положение, то не может быть никакой информации о величине импульса. В общем случае принцип Гейзенберга утверждает, что положение и импульс могут быть известны только с определённой степенью погрешности. Это неотъемлемое свойство природы, а не следствие измерительных ошибок.


Файер Майкл читать все книги автора по порядку

Файер Майкл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Абсолютный минимум. Как квантовая теория объясняет наш мир отзывы

Отзывы читателей о книге Абсолютный минимум. Как квантовая теория объясняет наш мир, автор: Файер Майкл. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.