Мы представляем этот механизм, качественно, следующим образом. Как отмечалось выше (5.3), заряженная частица индуцирует в окружающем веществе статические зарядовые разбалансы. Все эти разбалансы не могут иметь один и тот же знак, поскольку сумма их эффективных зарядов не может превысить по модулю заряд индуцирующей частицы. Мы полагаем, что, в последовательных сферических слоях вокруг частицы, знаки индуцированных зарядовых разбалансов чередуются – эффективный электрический заряд результирующего «комплекса» равен частному от деления заряда частицы на диэлектрическую проницаемость среды. При движении этого «комплекса», накрываемые им молекулы среды попадают то в «отрицательный», то в «положительный» слои. Поэтому статические разбалансы, индуцируемые в них, являются знакопеременными – с периодом, примерно равным отношению удвоенной толщины слоя к скорости движения «комплекса». Эти дополнительные разбалансы могут нарушить штатный циклический процесс, обеспечивающий химическую связь (5.7), что приведёт к диссоциации молекулы. Логично допустить, что эффективность такой диссоциации будет наиболее вероятна при совпадении периода индуцируемых разбалансов и периода кванта возбуждения, которым циклически обмениваются связанные атомы (5.7) – при этом кинетическая энергия заряженной частицы будет особенно эффективно «тратиться» на диссоциацию молекул. Для случая газовой среды, в качестве грубой оценки толщины одного слоя в «комплексе» можно взять длину среднего пробега молекул λсвоб. Тогда для воздуха при нормальных условиях, у которого λсвоб=6.2·10-8 м [Е1], и для периода τ=3.2·10-14 с, соответствующего максимуму равновесного спектра (5kT) при T=300оК, мы получаем для скорости «комплекса», дающей максимум ионизации, величину 2λсвоб/τ=3.9·106 м/с, которая по порядку совпадает с экспериментально найденными значениями (см. выше).
Как можно видеть, на основе нашего подхода понятно – по крайней мере, качественно – почему средние потери на ионизацию не зависят ни от энергии нерелятивистской заряженной частицы, ни от её типа. Становится понятно, почему ионизирующие способности электрона и позитрона идентичны – благодаря чему, собственно, позитрон и был открыт Андерсеном. Становится понятно, почему одинаковы потери на единицу пути у протона и электрона, которые имеют одинаковые скорости – именно скорости, а не энергии. Становится понятно, почему ионизирующая способность заряженной частицы увеличивается по мере её торможения. Наконец, вернёмся к вопросу о том, почему потери на ионизацию в инертных газах наименьшие, хотя энергии ионизации у них наибольшие.
Этот парадоксальный факт мы объясняем тем, что у атомов инертных газов нет валентных электронов, поэтому в инертных газах заряженная частица не растрачивает свою энергию на индуцирование зарядовых разбалансов. Главным механизмом ионизации здесь является именно ударный. Поэтому здесь значения ионизационных потерь близки к реальным затратам на ионизацию – в отличие от случаев молекулярных сред, где не каждый индуцированный зарядовый разбаланс приводит к ионизации, отчего в таких средах средние ионизационные потери больше реальных затрат на ионизацию.
Едва ли можно сомневаться в том, что движущаяся заряженная частица, индуцируя статические зарядовые разбалансы в молекулярной среде и ионизируя её, повышает её температуру. Этот вывод сыграет ключевую роль в вопросе об источнике тепла реакций горения (5.11).
5.11. О тепловых эффектах химических реакций.
Ортодоксы считают установленным, что, при экзотермических химических реакциях, тепло выделяется за счёт увеличения энергии химических связей у продуктов по сравнению с реагентами. Этот догмат положен в основу термохимии, и немалая часть справочных величин – теплоёмкостей, теплот образования, энергий диссоциации – получена не эмпирическим путём, а через термодинамические расчёты [В1,Ф3,Б1]. Энергии химических связей считаются характеристическими – в частности, не зависящими от температуры среды. Но температурная зависимость тепловых эффектов – для различных химических реакций – является, скорее, правилом, чем исключением [Ф3,Б1].
Чтобы не делать сокрушительный для термохимии вывод о непостоянстве энергий химических связей, теоретики ухватились за тезис о том, что единственной причиной температурных зависимостей тепловых эффектов являются температурные зависимости теплоёмкостей у реагентов и продуктов реакции. Закон Кирхгофа [Ф3] гласит: «температурный коэффициент теплового эффекта равен разности теплоёмкостей начальных и конечных веществ», т.е.
(dQ/dT)=C1-C2, (5.11.1)
где Q – тепловой эффект, T – абсолютная температура, C1 и C2 – соответствующие теплоёмкости. Интегрируя выражение (5.11.1) по температуре с учётом температурных зависимостей C1 и C2, и находя константу интегрирования с помощью известного значения Q для некоторой температуры, находят искомую зависимость Q(T) [Ф3,Б1]. Можно убедиться в неплохом совпадении справочных зависимостей Q(T), полученных с помощью калориметрических измерений, и расчётных зависимостей Q(T), найденных на основе справочных температурных зависимостей теплоёмкостей для реагентов и продуктов. Подобные совпадения и вправду свидетельствовали бы о корректности основных положений термохимии – если бы не то обстоятельство, что сопоставляемые здесь величины не являются независимыми.
Ну, действительно: как измеряют количество теплоты? Его измеряют калориметрическим методом – через приращение температуры балластного вещества, когда считаются известными его масса и теплоёмкость. А как измеряют теплоёмкости? Их измеряют тоже калориметрическим методом – через приращение температуры балластного вещества, когда считаются известными его масса и сообщённое ему количество теплоты. Выходит, что тепловые эффекты и теплоёмкости, связанные законом Кирхгофа (5.11.1), образуют, с эмпирической точки зрения, тривиальный замкнутый круг. Хуже того: соответствия между справочными температурными зависимостями теплоёмкостей и тепловых эффектов зачастую обеспечивались прямыми пересчётами, при множественных согласованиях экспериментальных результатов для одних и тех же веществ, участвующих в различных реакциях. По результатам этой титанической работы, в которой задействованы целые институты, закон Кирхгофа подтверждается, в основном, благодаря калькуляциям – выполненным именно так, как требует этот самый закон!
Такое положение дел неудивительно. Выше мы уже приводили свидетельства о том, что энергии химических связей являются иллюзиями (5.7,5.8). Теперь мы изложим наши представления о источниках тепла химических реакций. Мы говорим «о источниках», а не «о источнике» - вот почему. Известно, во-первых, множество реакций со слабыми тепловыми эффектами. Такие реакции, как правило, термодинамически обратимы – в условиях химического равновесия, количества элементарных актов прямой и обратной реакций, экзотермической и эндотермической, в среднем, одинаковы, и температура среды остаётся постоянной. Но известно, во-вторых, множество реакций с большим тепловым выходом – в частности, реакций горения. Они термодинамически необратимы: здесь, насколько нам известно, не бывает равновесий между прямой и обратной реакциями, причём, в обратной реакции не происходит эквивалентного «поглощения тепла». С позиций термодинамики, совершенно необъяснимо, почему при слабых тепловых эффектах названная обратимость имеет место, а при сильных – нет. Между тем, этот парадокс легко разрешается: ниже мы постараемся показать, что главный источник тепла при реакциях горения – совсем не тот, что при обратимых реакциях со слабым тепловым выходом.
Заметим, что известно множество экзотермических реакций пересоединения, при которых образованию связей у продуктов предшествует разрыв связей у реагентов. Тепловой выход здесь объясняют более сильными связями у продуктов по сравнению с реагентами. На первый взгляд, всё логично: реакция идёт в таком направлении, чтобы результирующая конфигурация оказывалась в сильнее связанном состоянии, чем исходная. Но эта исходная конфигурация не может самопроизвольно «скатиться» в более глубокую потенциальную яму. Молекулы реагентов имеют собственный запас устойчивости – скажем, в несколько эВ – и этот запас устойчивости определяет высоту энергетического барьера, который необходимо преодолеть этим молекулам, чтобы могло произойти химическое превращение. Полагают, что молекулы реагентов попадают на вершину этого энергетического барьера, приобретая т.н. энергию активации [Ф3,Б1]. Так, для реакций в газовой фазе, энергия активации приобретается, например, в результате столкновений молекул, скорости которых соответствуют высоко-скоростному «хвосту» максвелловского распределения. При таком столкновении, якобы, временно формируется т.н. активированный комплекс [П2] – из вмазанных друг в друга молекул реагентов – и этот комплекс скатывается в более связанное состояние, т.е. химические связи переформировываются, после чего продукты реакции разлетаются. Но эта механистическая модель, на наш взгляд, несостоятельна [Г3].