MyBooks.club
Все категории

Ричард Фейнман - 6. Электродинамика

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Ричард Фейнман - 6. Электродинамика. Жанр: Физика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
6. Электродинамика
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
130
Читать онлайн
Ричард Фейнман - 6. Электродинамика

Ричард Фейнман - 6. Электродинамика краткое содержание

Ричард Фейнман - 6. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

6. Электродинамика читать онлайн бесплатно

6. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман

Если вместо кольца у края электромагнита поместить алю­миниевый или медный диск, то и он отталкивается; индуциро­ванные токи циркулируют в материале диска и снова вызывают отталкивание.

Интересный эффект, в основе похожий на предыдущий, воз­никает с листом идеального проводника. В «идеальном провод­нике» ток совсем не встречает сопротивления. Поэтому возник­шие в нем токи могут течь не переставая. Фактически малейшая э. д. с. создала бы сколь угодно большой ток, а это на самом деле означает, что в нем вообще не может быть э. д. с. Любая попыт­ка создать магнитный поток, проходящий сквозь такой лист, вызовет токи, образующие противоположно направленные поля В — все со сколь угодно малыми э. д. с., так что никакого потока не будет.

Если к листу идеального проводника мы поднесем электромагнит, то при включении тока в магните в листе возникают токи (называемые вихревыми токами), и никакой магнитный поток не пройдет. Линии поля будут иметь вид, показанный на фиг. 16.8. То же самое произойдет, если к идеальному про­воднику поднести постоянный магнит. Поскольку вихревые токи создают противоположные поля, магниты от проводника отталкиваются. Поэтому оказывается возможным подвесить постоянный магнит в воздухе над листом идеального провод­ника, изготовленного в форме тарелки (фиг. 16.9). Магнит будет поддерживаться в воздухе за счет отталкивания индуцирован­ных вихревых токов в идеальном проводнике. При обычных температурах идеальных проводников не существует, но некоторые материалы при достаточно низких температурах стано­вятся идеальными проводниками.

Фиг. 16.9. Магнитная палочка отталкивается вихревыми токами и повисает над чашей из сверх­проводника.

Так, при температуре ниже 3,8° К олово становится идеальным проводником; тогда оно называется сверхпроводником.

Если проводник, показанный на фиг. 16.8, не вполне иде­альный, то возникнет некоторое сопротивление течению вихре­вых токов. Токи будут постепенно замирать, и магнит медленно опустится. В неидеальном проводнике, чтобы течь дальше, вихревым токам необходима некоторая э. д. с., а для возник­новения э. д. с. поток должен непрерывно меняться. Поток магнитного поля постепенно проникает в проводник.

В обычном проводнике имеются не только силы отталкива­ния за счет вихревых токов, но могут быть и боковые силы. Например, если мы передвигаем магнит над проводящей поверхностью, вихревые токи создают тормозящую силу, по­тому что индуцированные токи препятствуют изменению по­тока. Такие силы пропорциональны скорости и похожи на силы вязкости.

Эти эффекты хорошо наблюдаются на приборе, изображен­ном на фиг. 16.10. Квадратная медная пластинка укреплена на конце стержня, образуя маятник. Пластинка качается взад и вперед между полюсами электромагнита. Когда магнит вклю­чается, движение маятника неожиданно прекращается. Как только металлическая пластинка попадает в зазор магнита, в ней индуцируется ток, который стремится помешать измене­нию потока через пластинку. Если бы пластинка была идеаль­ным проводником, токи были бы столь велики, что они снова вытолкнули бы пластинку и она отскочила бы назад. В медной же пластинке имеется некоторое сопротивление, поэтому токи' сначала заставляют пластинку почти намертво застыть, когда она начинает входить в поле. Затем, по мере того как токи зами­рают, пластинка продолжает медленно двигаться в магнитном; поле и останавливается совсем.

Схема вихревых токов в медном маятнике поясняется фиг. 16.11. Сила и расположение токов весьма чувствительны к форме пластинки. Если, скажем, вместо медной пластинки взять другую, в которой имеется ряд узких щелей (фиг. 16.12), то эффекты вихревых токов сильно уменьшатся. Маятник проходит сквозь магнитное по­ле лишь с небольшой тор­мозящей силой

Фиг. 16.10. Торможение маят­ника указывает на силы, возни­кающие благодаря вихревым то­кам.

Причина в том, что токи в каждой ча­сти пластинки возбуждают­ся меньшими по величине потоками и, следовательно, эффекты сопротивления каж­дой петли оказываются боль­шими. Чем меньше токи, тем меньше и торможение. Вяз­кий характер силы проявит­ся еще более наглядно, если медную пластинку поместить между полюсами магнита и за­тем отпустить ее. Пластинка не падает, она просто медленно опускается. Вихревые токи оказывают сильное сопротивление движению, точь-в-точь как вязкое сопротивление меда.

Если мы не будем протаскивать проводник мимо магнита, а попробуем вращать его в магнитном поле, то в нем в резуль­тате тех же эффектов возникнет тормозящий момент. И наоборот, если вращать магнит, меняя местами его полюса, вблизи проводящей плоско­сти или кольца, то кольцо повернется за магнитом, токи в кольце создадут мо­мент, стремящийся повернуть кольцо вместе с магнитом.

Фиг. 16.11. Вихревые токи в медном маятнике.

Фиг. 16.12. Эффекты от вих­ревых токов сильно снижа­ются, если в пластинке про­резать щели.

Поле, весьма похожее на поле вращающегося магнита можно создать с помощью устройства из катушек (фиг. 16.13). Мы берем железный тор (т. е. железное кольцо в виде бублика) и наматываем на него шесть катушек. Направив ток так, как показано на фиг. 16.13, а, через обмотки 1 и 4, мы получим магнитное поле в направлении, указанном стрелками. Если мы теперь переключим ток на обмотки 2 и 5, то магнитное поле будет направлено уже по-другому (фиг. 16.13, б). Продолжая так действовать, мы получаем последовательность полей, изо­браженных на остальных частях нашего рисунка. Если процесс проводить плавно, то получится «вращающееся» магнитное поле. Подсоединив катушки к сети трехфазного тока (а она дает именно такую последовательность токов), мы легко полу­чим требуемую последовательность токов. «Трехфазный ток» создается генератором, использующим принцип фиг. 16.1, за тем исключением, что на оси симметрично укрепляются три рамки, т. е. каждая под углом 120° к соседней. Когда рамки вращаются как единое целое, э. д. с. максимальна в одной рамке, затем в другой и т. д. в правильной последовательности. Трехфазный ток имеет много практических преимуществ. Одно из них заключается в возможности получить вращающееся магнитное поле. Момент, действующий на проводник со стороны такого вращающегося поля, легко обнаруживается на металлическом кольце, поставленном на изолирующей подставке прямо над тором (фиг. 16.14). Вращающееся поле вызывает вращение кольца вокруг вертикальной оси. Здесь видны те же основные элементы, которые имеются в больших промышленных трех­фазных индукционных моторах.

Фиг. 16.13. Создание вращающегося магнитного поля.

Другой тип индукционного мотора показан на фиг. 16.15. Это устройство непригодно для практических высокоэффектив­ных моторов, но иллюстрирует основной принцип. Электромаг­нит М, состоящий из пачки прокатанных железных листов, на которую навита спиральная обмотка, питается от генератора переменного тока. Магнит создает переменный поток поля 15 сквозь алюминиевый диск. Если имеются только эти две компо­ненты (см. фиг. 16.15, а), у нас еще нет мотора. В диске имеются вихревые токи, но они симметричны и момента не возникает. (Диск будет немного нагреваться за счет токов индукции.)

Фиг. I6.14. С помощью враща­ющегося поля (фиг. 16.13) можно придать кольцу из проводника вращающий момент.

Фиг. 16.15. Простой пример индукционного мотора с затененным полюсом.

Если теперь мы закроем только одну половину магнитного по­люса алюминиевой пластинкой (фиг. 16.15, б), то диск начнет вращаться и мы получим мотор. Действие его связано с двумя эффектами вихревых токов. Во-первых, вихревые токи в алю­миниевой пластинке препятствуют изменению потока сквозь нее, поэтому магнитное поле над пластинкой всегда отстает от поля над непокрытой частью полюса. Этот так называемый эффект «затененного полюса» создает поле, которое в «затенен­ной» области меняется совсем так же, как и в «незатененной», за исключением постоянного запаздывания во времени. Эффект в целом такой, как будто имеется вдвое более узкий магнит, постоянно передвигающийся из незатененной области в затенен­ную. Во-вторых, меняющиеся поля взаимодействуют с вихре­выми токами диска, создавая в нем момент силы.

§ 4. Электротехника

Когда Фарадей впервые опубликовал свое замечательное открытие о том, что изменение магнитного потока создает э. д. с., его спросили (как спрашивают, впрочем, всякого, кто откры­вает какие-то новые явления): «Какая от этого польза?» Ведь все, что он обнаружил, было очень странным — в проводе воз­никал крошечный ток, когда он двигал провод возле магнита. Какая же может быть от этого «польза»? Фарадей ответил: «Ка­кая может быть польза от новорожденного?»


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


6. Электродинамика отзывы

Отзывы читателей о книге 6. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.