24
Я благодарен Вальтеру Исааксону за личное обсуждение этого и ряда других исторических вопросов, связанных с Эйнштейном.
Давайте рассмотрим этот вопрос подробнее. Глэшоу, Салам и Вайнберг предположили, что электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия. Электрослабая теория была подтверждена в экспериментах на ускорителе в конце 1970-х и начале 1980-х годов. Глэшоу и Джорджи пошли дальше и предложили, что электрослабое и сильное взаимодействия являются проявлениями ещё более фундаментального взаимодействия, в рамках подхода, который был назван великим объединением. Однако простейшая версия великого объединения была отброшена, когда учёным не удалось экспериментально подтвердить одно из предсказаний — что протоны должны время от времени распадаться. Тем не менее есть много других вариантов великого объединения, которые пока экспериментально не отвергнуты, например потому, что предсказываемая ими скорость распада протона настолько мала, что чувствительность современного экспериментального оборудования недостаточна для обнаружения распада. Однако даже если великое объединение не подкрепляется экспериментальными данными, уже нет никаких сомнений, что три негравитационных взаимодействия могут быть описаны на едином математическом языке квантовой теории поля.
Открытие теории суперструн дало толчок к развитию других, тесно связанных теоретических подходов, направленных на поиски единой теории фундаментальных взаимодействий. В частности, суперсимметричная квантовая теория поля и её гравитационное расширение (супергравитация) глубоко изучались в середине 1970-х годов. Суперсимметричная квантовая теория поля и супергравитация основаны на новом принципе суперсимметрии, который был открыт в рамках теории суперструн, но эти подходы подключают суперсимметрию к обычным теориям точечных частиц. Позже в этой главе мы кратко обсудим суперсимметрию, но для заинтересовавшихся читателей я здесь замечу, что суперсимметрия — это самая последняя из имеющихся симметрий (помимо вращательной симметрии, трансляционной симметрии, симметрии Лоренца и, в общем случае, симметрии Пуанкаре) в нетривиальной теории элементарных частиц. Она связывает частицы различных квантово-механических спинов и вскрывает глубокое математическое родство между частицами-переносчиками взаимодействий и частицами, из которых состоит материя. Супергравитация — это расширение суперсимметрии посредством включения гравитационного поля. В ранний период исследований по теории струн учёные осознали, что суперсимметрия и супергравитация возникают в низкоэнергетическом пределе теории струн. При низких энергиях протяжённость струны разглядеть нельзя, поэтому она выглядит как точечная частица. Соответственно, как будет обсуждаться в этой главе, применительно к низкоэнергетическим процессам математический аппарат теории струн преобразуется в аппарат квантовой теории поля. Учёные обнаружили, что поскольку суперсимметрия и гравитация выживают при таком преобразовании, то низкоэнергетические теории струн приводят к суперсимметричным квантовым теориям поля и супергравитации. Как будет обсуждаться в главе 9, связь между суперсимметричной теорией поля и теорией струн впоследствии стала ещё более глубокой.
Осведомлённый читатель может не согласиться с моим утверждением, что каждое поле ассоциируется с частицей. Более точное утверждение звучит так: малые флуктуации поля около локального минимума его потенциала обычно интерпретируются как возбуждения частиц. Этого определения будет достаточно для наших обсуждений. К тому же осведомлённый читатель заметит, что локализация частицы в точке сама по себе является идеализацией, потому что для этого потребуется — из принципа неопределённости — бесконечный импульс и энергия. Опять же суть в том, что в квантовой теории поля нет, в принципе, предела того, как можно в конце концов локализовать частицу.
Исторически математическая техника, известная как перенормировка (или ренормализация), была развита для устранения количественных проявлений жёстких (высокоэнергетичных) колебаний квантового поля на малых расстояниях. При применении к квантово-полевым теориям трёх негравитационных взаимодействий перенормировка устранила бесконечные величины, возникающие при различных вычислениях, что позволило физикам сделать фантастически точные предсказания. Однако, когда перенормировку применили к квантовым флуктуациям гравитационного поля, она оказалась неэффективной: метод не смог устранить бесконечности, возникающие при квантовых вычислениях с учётом гравитации.
С более современных позиций эти бесконечности рассматриваются несколько иначе. Физики осознали, что на пути к более глубокому пониманию законов природы разумно придерживаться той точки зрения, что любая теория приблизительна — если вообще значима — и скорее всего может описывать физические явления только вплоть до некоторого определённого масштаба (или только до некоторого энергетического масштаба). Явления за его пределами не могут описываться данной теорией. Согласно этой точке зрения, безрассудно применять данную теорию на расстояниях, меньших чем область применимости теории (или на энергиях, превышающих область применимости). С учётом таких встроенных отсеканий (подобно тем, что описаны в основном тексте) бесконечности никогда не будут возникать. Наоборот, все вычисления проводятся в теории, диапазон применимости которой обозначен с самого начала. Это означает, что предсказательная сила ограничена явлениями, находящимися в установленных теорией пределах, а на очень коротких расстояниях (больших энергиях) теория не работает. Окончательная цель полной теории квантовой гравитации состоит в устранении встроенных пределов и распространении предсказательной силы теории на произвольные масштабы.
Чтобы понять, откуда берутся эти конкретные числа отметим, что квантовая механика (см. главу 8) сопоставляет частице волну, и чем тяжелее частица, тем короче длина волны (расстояние между последовательными гребнями). Общая теория относительности Эйнштейна также сопоставляет длину произвольному объекту — это размер, до которого надо сжать объект, чтобы он стал чёрной дырой. Чем тяжелее объект, тем больше этот размер. А теперь возьмите частицу, которая описывается квантовой механикой, и представьте, что её масса медленно растёт. При этом квантовая волна частицы укорачивается, а её «размер чёрной дыры» увеличивается. При некоторой массе квантовая длина волны и размер чёрной дыры совпадут, что задаст тот уровень массы и размера, при котором квантово-механические и гравитационные рассмотрения одновременно важны. При проведении численной оценки такого мысленного эксперимента масса и размер оказываются равными тем значениям, которые озвучены в основном тексте — планковской массе и планковской длине соответственно. Забегая вперёд, скажу, что в главе 9 мы будем обсуждать голографический принцип. Основываясь на общей теории относительности и физике чёрных дыр, этот принцип утверждает, что существует очень определённое ограничение на количество физических степеней свободы, которые могут существовать внутри произвольной области пространства (это более точная версия рассуждений из главы 2 относительно количества различных конфигураций частиц в заданном объёме пространства; это также обсуждается в комментарии {11}). Если этот принцип верен, то конфликт между общей теорией относительности и квантовой механикой может возникнуть прежде, чем расстояния станут малыми, а кривизны большими. Огромный объём пространства, заполненный газом частиц даже малой плотности, будет обладать, согласно квантовой теории, значительно бо́льшим количеством степеней свободы, чем позволяет голографический принцип (основанный на общей теории относительности).
Квантово-механический спин является достаточно тонким понятием. Трудно представить, что значит «вращающийся», особенно в квантовой теории поля, где частицы считаются точками. На самом деле, из экспериментов следует, что частицы могут обладать внутренним свойством, очень похожим на постоянный угловой момент. Более того, из квантовой теории следует, и эксперименты это подтверждают, что частицы могут иметь угловой момент, который является только целым кратным некоторой фундаментальной величины (константы Планка, делённой на 2). Поскольку классические вращающиеся объекты обладают внутренним угловым моментом (который, однако, не является постоянным — он изменяется при изменении вращательной скорости объекта), теоретики заимствовали название «спин» и применили его к аналогичной квантовой ситуации. Отсюда название «спиновый угловой момент». Хотя выражение «вращающийся как волчок» создаёт подходящий зрительный образ, более точно будет представлять, что частицы характеризуются не только их массой, электрическим зарядом, зарядом ядра, а также внутренним неизменным спиновым угловым моментом. Подобно тому как электрический заряд частицы является одним из её фундаментальных определяющих свойств, эксперименты демонстрируют, что таким же свойством является её спиновый угловой момент.