MyBooks.club
Все категории

Miguel Sabadell - Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Miguel Sabadell - Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез. Жанр: Научпоп издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез
Автор
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
132
Читать онлайн
Miguel Sabadell - Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Miguel Sabadell - Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез краткое содержание

Miguel Sabadell - Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез - описание и краткое содержание, автор Miguel Sabadell, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.

Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез читать онлайн бесплатно

Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез - читать книгу онлайн бесплатно, автор Miguel Sabadell

Максвелл учел замечания немецкого ученого и сконструировал свой прибор в 1852 году. Однако ранее ему нужно было провести собственные исследования с цветовым кругом.


КРУТИСЬ, КРУТИСЬ, ВОЛЧОК

Первое, что нужно было сделать, — получить количественные измерения смешения цветов. Для этого Максвелл изменил круг (своего рода волчок) таким образом, чтобы можно было выбрать количество каждого цвета, который он собирался использовать. В ходе экспериментов Максвелл выяснил, что с помощью белого, черного, красного, зеленого, желтого и синего можно получить любой цвет. Но нужно было сделать результаты более точными, и он использовал второй круг меньшего размера, который поместил поверх первого. Таким образом, на нижний круг накладывались три цвета, например черный, желтый и синий, а на верхний — красный и зеленый. Чтобы количественно оценить пропорцию каждого цвета, который был на обоих кругах, ему нужно было только посмотреть на нанесенную на них шкалу.

Эскиз Ньютона к одному из его экспериментов с цветами. В числе многочисленных разработок английского математика и физика — теория цвета.

Джеймс Клерк Максвелл (в возрасте 23 лет) держит цветовой круг в Тринити- колледже в Кембридже. Максвелл основывался на теории цвета Ньютона и был первым ученым, предложившим количественную теорию цвета, что принесло ему признание коллег.


Можно ли получить один и тот же цвет на обоих кругах? Оказалось, что да. Во время одного из своих экспериментов он обнаружил, что получает один и тот же цвет, грязный желтый, из 46,8 части черного, 29,1 желтого и 24,1 синего, а также из 66,6 части красного и 33,4 части зеленого. Но черный — не цвет: Максвелл включил его, чтобы контролировать блеск и тональность смешения синего и зеленого. Получалось, что 29,1 части желтого и 24,1 синего производят тот же цвет, что и 66,6 части красного и 33,4 части зеленого. Если обозначить цвета как А, В, С и D, а количество каждого цвета — как а, b, с и d, мы можем обобщить этот результат:

cC+dD = aA+bB,

где символ + означает «в сочетании с», а символ = «совпадает по окраске». Точно так же мы можем сказать, что

dD = аА + bВ - сС.

В этом случае символ — означает, что для приравнивания цветов мы должны сочетать С и D и тогда это совпадет со смешением А и В. Следовательно, можно утверждать, что для любого цвета X существует такое смешение из трех цветов, что

хХ = аА + bВ+сС.

Если знак какой-нибудь из величин а, b или с отрицательный, то это значит, что цвет должен сочетаться с X для совпадения по окраске со смешением двух других. В январе 1855 года Максвелл написал: 

«Нет необходимости определять какие-либо цвета как типичные для этих ощущений. Юнг выбрал красный, зеленый и фиолетовый, но он мог выбрать любую другую группу из трех цветов, которые дадут белый, если их смешать подходящим образом».

Юнг включил в свою теорию цветовой треугольник, на котором он показывал, что все цвета, включая белый, можно получить на основе трех первичных: красного, зеленого и фиолетового. Это противоречие с триадой цветов, принятой среди художников, в 1849 году Форбс обозначил как «исключительное мнение».

В том же году в январе Максвелл согласился с идеей Юнга, но подчеркнул, что ключевым моментом выбора первичных цветов является их сочетание в нужных пропорциях для получения белого цвета. Благодаря своим экспериментам он чувствовал себя готовым к классификации цветов. Он исходил из предположения немецкого ученого Германа Грассмана (1809-1877), изложенного в его статье «О теории смешения цветов» (Oberdie Theorie der Farbenmischung), опубликованной в 1853 году. В ней говорилось, что с точки зрения цветов существуют три переменные: тон, или спектральный цвет; блеск, или интенсивность цвета; а также блеск белого. Исходя из этого Грассман ввел две производные величины: общий блеск, то есть сумма блесков цвета и белого, и степень насыщенности, или причина блеска одного цвета в общем цвете. Ученый доказал, что каждый цвет может быть представлен через свое положение и определенный «вес» в хроматическом круге Ньютона, так что, например, произведение общего блеска на расстояние от центра дает в результате интенсивность цвета.

Основываясь на всем этом, Максвелл показал, что данные переменные можно представить на диаграмме, которая включает в себя треугольную схему Юнга, цветовой круг Ньютона и классификацию цветов Грассмана. Его геометрическое представление цвета известно как «треугольник Максвелла».


ЦВЕТОВОЙ ТРЕУГОЛЬНИК

Три первичных цвета — красный, зеленый и синий (на самом деле это киноварь, изумрудный и ультрамарин) — представлены вершинами равностороннего треугольника (см. рисунок на следующей странице). Каждая точка треугольника изображает цвет, который можно получить определенным смешением этих трех цветов, а центральная точка представляет собой белый цвет. Каждая точка треугольника соответствует решению уравнения

Цвет = %К + %3 + %С,

где — это процент красного, определяемый как 100 k/(k+3+ с), %3 — процент зеленого, 100 з/(k+3+ с), а %C процент синего, 100 с/ (k+з+с), а и с — расстояния до точки треугольника. Кроме того, спектральный цвет задан угловым положением прямой к центру тяжести треугольника (белому), а уровень насыщенности — расстоянием от него.

Однако Максвелл осознавал, что не все цвета могут образовываться в качестве сочетания этих трех первичных: в его геометрическом представлении были цвета, которые оказывались вне границ треугольника. Какие? Те, что, как мы видели, получаются при вычитании первичного цвета, либо (то же самое) имеющие отрицательное значение с, з или к.

Система Максвелла была устойчивой, поскольку не зависела от выбора первичных цветов, но Джеймс выяснил, что его личный выбор этих цветов очень близок к идеальной триаде, поскольку подавляющее большинство цветов оказывалось внутри треугольника.

Результаты исследования Максвелла были опубликованы в 1855 году в журнале Эдинбургского королевского общества под названием «Эксперименты с цветом, восприятие глаза». Сегодня мы ежедневно сталкиваемся с тремя первичными цветами, когда включаем телевизор.

Конкретный цвет может быть определен в этом треугольнике по расстоянию от каждой из его сторон, как поясняется в тексте. Геометрический центр треугольника соответствует белому.


В письме Форбсу в ноябре 1857 года Максвелл объяснял:

«Раскрашенные листы бумаги и волчки, хотя и довольно точны в большинстве спектральных экспериментов, не предоставляют никаких абсолютных фактов по определению цветов».

Причину этого он изложил еще в статье 1855 года:

«Цвета на дисках никоим образом не воспроизводят первичных цветов, они просто представляют различные типы красок».

Следовательно, уравнения, которые нашел Максвелл, описывали всего лишь отношения «между цветами определенных пигментов».

Схема «цветовой коробки», сконструированной Максвеллом, где лучи света показаны пунктирной линией.


По этой причине еще в 1852 году он сконструировал (следуя фон Гельмгольцу) собственную «цветовую коробку» с рядом призм и щелей для экспериментов со светом (см. рисунок ниже). На тот момент наибольшая сложность была в качественной шлифовке оптики коробки. В 1855 году Максвелл сконструировал коробку, в которой мог наблюдать смешения двух чистых цветов, и на ее основе в следующем году — другую, портативную, «чтобы показывать явление, хотя и в грубом виде, другим людям».

С помощью своей идеально откалиброванной коробки и идей Грассмана, Юнга и Ньютона в качестве теоретической основы, Максвелл смог нарисовать кривые распределения светимости каждого стандартного цвета в зависимости от длины его волны, представив механизм физиологической реакции глаза. Его интересовал принцип работы глаза, животного или человеческого. Но у него не было приборов для таких исследований, так что ему пришлось сконструировать офтальмоскоп, изобретенный фон Гельмгольцем за год до этого, о чем Джеймс не имел ни малейшего понятия. Максвелл провел много времени, изучая с помощью офтальмоскопа глаза людей и собак. Чтобы убедить людей согласиться на исследование, он позволял им сначала посмотреть внутрь его собственных глаз.

Женитьба Максвелла в 1858 году придала ему сил, и он смог доказать, что при смешении любого цвета спектра от красного до зеленого с небольшой частью синего получается определенное смешение красного и зеленого. Точно так же любой цвет, полученный в результате смешения цвета от зеленого до фиолетового с небольшим количеством красного, можно получить смешением зеленого и фиолетового. Таким образом, он смог заменить хроматический круг Ньютона кривой, основанной на его треугольнике. Очевидно, форма данной кривой зависит от глаза наблюдателя, но Максвелл открыл, что большинство людей воспринимают цвета почти одинаково. Отдельный случай представляют собой люди с дисхроматопсией (нарушением цветового зрения): если они не видят красный, то для них практически все цвета сводятся к смешению зеленого и фиолетового. В 1860 году Джеймс опубликовал последнюю большую работу по теории цвета, в которую включил все свои заключения: «О теории составных цветов».


Miguel Sabadell читать все книги автора по порядку

Miguel Sabadell - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез отзывы

Отзывы читателей о книге Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез, автор: Miguel Sabadell. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.