MyBooks.club
Все категории

Льюис Уолперт - Чудесная жизнь клеток: как мы живем и почему мы умираем

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Льюис Уолперт - Чудесная жизнь клеток: как мы живем и почему мы умираем. Жанр: Научпоп издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Чудесная жизнь клеток: как мы живем и почему мы умираем
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
240
Читать онлайн
Льюис Уолперт - Чудесная жизнь клеток: как мы живем и почему мы умираем

Льюис Уолперт - Чудесная жизнь клеток: как мы живем и почему мы умираем краткое содержание

Льюис Уолперт - Чудесная жизнь клеток: как мы живем и почему мы умираем - описание и краткое содержание, автор Льюис Уолперт, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Что мы знаем о жизни клеток, из которых состоим? Скорее мало, чем много. Льюис Уолперт восполнил этот пробел, рассказав о клетках доступным языком, — и получилась не просто книга, а руководство для понимания жизни человеческого тела. Как клетки зарождаются, размножаются, растут и приходят в упадок? Как они обороняются от бактерий и вирусов и как умирают? Как злокачественные клетки образуют опухоли? Какую роль во всем этом играют белки и как структуру белков кодируют ДНК? Как воспроизводятся стволовые клетки? Как, наконец, из одной-единственной клетки развивается человек? И главный вопрос, на который пока нет однозначного ответа, но зато есть гипотезы: как появилась первая клетка — и значит, как возникла жизнь? Мир клеток, о котором рассказывается в этой книге, невероятен.Льюис Уолперт (р. 1929) — известный британский биолог, популяризатор науки, телеведущий, почетный профессор Лондонского университета.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г. № 436-ФЗ, ст. 1, п. 2, пп. 3. Возрастных ограничений нет

Чудесная жизнь клеток: как мы живем и почему мы умираем читать онлайн бесплатно

Чудесная жизнь клеток: как мы живем и почему мы умираем - читать книгу онлайн бесплатно, автор Льюис Уолперт

Несмотря на то что жировые молекулы не терпят воды, вода все же способна проникать сквозь клеточную оболочку внутрь клетки, а также выводиться из нее. Но жировая оболочка пропускает внутрь в основном молекулы воды, не имеющие электрического заряда. Те же молекулы, что содержат электрический заряд — например, натрий и ионы калия, — проникают сквозь оболочку с большим трудом.

Ион — это атом или молекула, которая либо потеряла, либо приобрела один или два электрона, в результате чего получила отрицательный или положительный электрический заряд. Клеточную оболочку ионы преодолевают при помощи специального механизма транспортировки, состоящего из белков. Размещенные в клеточной оболочке белки также обеспечивают проникновение в клетку и вывод из нее крупных молекул. Клеточная оболочка содержит в себе две белковые системы по транспортировке молекул: одни белки обеспечивают чужим молекулам каналы проникновения сквозь оболочку, а другие выступают в роли их непосредственных переносчиков.

Концентрация ионов натрия вне клеток примерно в 20 раз выше их концентрации внутри клеток. Концентрация ионов калия вне клеток, наоборот, примерно в 20 раз ниже их концентрации внутри клеток. Подобная разница достигается за счет работы белкового «натриевого насоса» — белка, который выносит из клетки молекулы натрия и закачивает молекулы калия. Работа этого «насоса» чрезвычайно важна для того, чтобы не допустить разрыв клеточной оболочки под напором нагнетаемой в клетку воды. Если работа белкового «насоса» остановится, то давление разорвет оболочку клетки и клетка погибнет. Около одной трети всей энергии клетки — то есть около одной трети вашей энергии — уходит на обеспечение работы этого насоса.

Для того чтобы в клетку могла проникнуть глюкоза, являющаяся необходимым компонентом для обеспечения ее энергией, требуется особый белковый механизм; его роль осуществляет белок инсулин. В присутствии инсулина глюкоза переносится сквозь клеточную оболочку при помощи особых групп молекул, которые называются «транспортировщиками глюкозы». Они размещаются в мельчайших пузырьках внутри клетки. Когда инсулин связывается с оболочкой клетки, пузырьки перемещаются по системе микротрубочек, пока также не достигают оболочки и не связываются с ней. После этого транспортировщики глюкозы проникают в оболочку клетки и переносят сквозь нее молекулы глюкозы. Отказы в работе этого механизма приводят к развитию диабета.

В отсутствие инсулина глюкоза не способна преодолеть клеточную оболочку и проникнуть внутрь клетки. Инсулин вырабатывается бета-клетками поджелудочной железы, и, если эти клетки перестают вырабатывать инсулин, развивается диабет первого типа. Диабет первого типа является болезнью аутоиммунного происхождения, в ходе которой иммунная система ошибочно атакует и уничтожает бета-клетки. Проявляется диабет первого типа уже в раннем возрасте. Диабет второго типа, наоборот, поражает человека в возрасте более зрелом; причина его в том тем, что рецепторы клеточной оболочки перестают реагировать на инсулин и он не может ее преодолеть. Основным фактором риска при возникновении диабета второго типа является ожирение, поскольку увеличившиеся жировые клетки вырабатывают большее количество веществ, в том числе жирные молекулы особого вида, которые провоцируют устойчивость к инсулину. Напротив, «исхудавшие» жировые клетки вырабатывают вещества, способствующие поглощению инсулина. При диабетах обоих типов потребление глюкозы клетками значительно уменьшается, что, в свою очередь, уменьшает их способность вырабатывать энергию и ведет к сердечно-сосудистым заболеваниям, отказу почек, слепоте, нервным расстройствам, плохому заживлению ран и т. д. Плохое же заживление ран, особенно на ногах, грозит гангреной и ампутацией.

4. Как работают гены

Как ДНК кодируют структуру белков

Каждая наша клетка содержит около 30 тысяч различных генов, в то время как некоторым бактериям достаточно всего 500 генов. В генах содержатся коды, согласно которым синтезируются белки и определяется порядок расположения в них аминокислот. В каком бы месте человеческого тела ни находились клетки, они всегда содержат один и тот же набор генов. Однако в зависимости от типа клеток — клеток кожи, нервных или мышечных — в них для синтеза новых белков задействуются различные гены.

Длинные цепочки ДНК в хромосомах клетки плотно сжаты. Компактное расположение ДНК в хромосомах осуществляется за счет особых белков, вокруг которых наматываются нити ДНК. Но в клетке присутствуют белки, которые, чтобы облегчить синтез новых белков согласно содержащемуся в ДНК коду, при необходимости переводят ДНК из компактной формы в развернутую. Под воздействием этих белков готовящиеся к делению клетки хромосомы развертываются и с этого момента занимают в 10 тысяч раз больше места.

Нуклеотиды типа «А», «Т», «С» и «G», входящие в состав длинных молекул ДНК, располагаются в определенном порядке, чтобы обеспечивать кодирование белков при их синтезе, который происходит из 20 различных видов аминокислот. ДНК при этом выполняют роль матрицы — каждому белку соответствует свой ген, по образцу которого осуществляется синтез аминокислот, образующих нужный белок. Таким образом генетический код воплощается в белках, и последовательность нуклеотидов в гене определяет последовательность аминокислот в белке. Это очень похоже на азбуку Морзе, где точки, тире и их совокупность соответствуют определенным буквами алфавита. Последовательность нуклеотидов, которые считываются по три за один раз, соответствует последовательности аминокислот в белке. При этом набор из трех нуклеотидов, которые считываются за один раз, кодирует одну аминокислоту. Так, например, набор нуклеотидов AUG кодирует аминокислоту ацидометионин.

Существуют 64 комбинации нуклеотидов, однако синтезируются всего 20 различных видов аминокислот. Это означает, что некоторые троичные последовательности нуклеотидов используются не для синтеза аминокислот, а для обозначения прерывания процедуры синтеза. Совершенно бессмысленных наборов троичных нуклеотидов не бывает — каждый из них выполняет какую-то определенную функцию. Существует и несколько наборов нуклеотидов, которые кодируют одни и те же аминокислоты. Самый крупный ген состоит из двух миллионов нуклеотидов, размещенных на каждой из его нитей, а самый маленький — из одной тысячи.

Наши ДНК — это помещенные внутри клеточного ядра кладези ценнейшей информации. Однако синтез белков происходит не в ядре, а в окружающей его цитоплазме клетки. Как же это происходит? Сначала содержащийся в ДНК белковый код передается другой аминокислоте — РНК, которая, подобно ДНК, представляет собой цепь из четырех нуклеотидов. Однако, в отличие от ДНК, представляющей собой двойную цепочку, свернутую в спираль, РНК состоит из одной цепочки нуклеотидов. Другое отличие РНК от ДНК заключается в том, что вместо нуклеотида «Т», в цепочке РНК помещен нуклеотид урацил, который легко связывается с нуклеотидом «А». Это означает, что цепочка РНК может присоединяться к цепочке ДНК и дополнять ее.

Открытие РНК последовало после того, как ученые пришли к выводу о том, что должен существовать какой-то механизм передачи генетической информации от ДНК, находящейся внутри клеточного ядра, в цитоплазму. Эта мысль посетила Сиднея Бреннера, ученого из Южной Африки, который является моим кумиром, и Фрэнсиса Крика во время научной конференции, которая состоялась в 1960 году в Кембридже. После этого Бреннер и Крик отправились в США, чтобы провести серию экспериментов, и в ходе их открыли РНК.

Ген включается в активную работу по синтезу новых белков тогда, когда он передает свой код РНК при помощи специального белкового механизма, который копирует генетический код ДНК, представляющий собой последовательность нуклеотидов.

Процесс считывания генетической информации, который называется «транскрипция», начинается с открытия и развертывания небольшой части двойной спирали ДНК в конце хромосомы. Генетические коды этого участка хромосомы копируются затем на растущую по мере продвижения процесса копирования молекулу РНК; при этом белковый копирующий механизм продвигается вдоль нити ДНК. Процесс переноса генетического кода заканчивается, когда на конце РНК синтезируется так называемая терминальная группа аминокислот — ее присутствие сигнализирует об окончании белковой цепочки данного кода. Многие могут подумать, что после этого РНК готова к тому, чтобы на основе ее матрицы начался синтез нужного белка. Однако, как и все остальное клетках, все не так просто.

Большинство генов, которые находятся в наших клетках, содержат в своем составе намного больше нуклеотидов, чем реально требуется для синтеза белков. Те нуклеотиды, которые не нужны для синтеза, называются нитронами. Они копируются на РНК, но перед тем, как она может начать синтез новых белков, удаляются.


Льюис Уолперт читать все книги автора по порядку

Льюис Уолперт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Чудесная жизнь клеток: как мы живем и почему мы умираем отзывы

Отзывы читателей о книге Чудесная жизнь клеток: как мы живем и почему мы умираем, автор: Льюис Уолперт. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.