Протиснувшись через одно такое отверстие, вы оказываетесь внутри клетки. Здесь вокруг вас с огромной скоростью движутся миллионы белковых молекул, которые отвечают за работу клетки, а также молекулы сахаров и жиров. Вы увидите также внутренние оболочки клетки, различные белковые нити и микрокапсулы. Нити и капсулы образуются из белковых молекул, которые соединяются вместе, чтобы сформировать сложные построения. Каждое из этих белковых образований подобно зрителю на заполненном до отказа футбольном стадионе — зрителей очень много, все вместе они образуют гигантскую толпу, но каждый при этом живет своей особой отдельной жизнью. Вам может показаться, что отдельные молекулы внутри клетки движутся хаотично, однако это не так.
Тысячи различных белковых молекул непрерывно кружатся в клетке, готовые участвовать в выполнении общей работы. Белки, созданные из аминокислот, подобны свитым вместе причудливым гирляндам цепей. Порой они принимают весьма причудливые формы. Некоторые из них действуют, подобно машинам, разрезая одни молекулярные цепочки и конструируя другие. В процессе этой работы они сами меняют свою форму, напоминая перестроения акробатов. Вы также можете наблюдать отдельные молекулы, которые при помощи специальных белков передвигаются внутри клетки по маленьким трубкам, в свою очередь сложенным из белковых молекул, — эти трубки чем-то схожи с железнодорожными путями.
Особую важность представляет процесс синтеза новых белковых образований. Гены следят за тем, чтобы аминокислоты, из которых, как из кирпичиков, складываются новые белки, соединялись друг с другом в правильной последовательности. Эти аминокислоты присоединяются друг к другу одна за другой, формируя длинные цепочки, которые затем образуют сложные белки.
Энергию, которая необходима для большей части этих процессов, предоставляют молекулы аденозинтрифосфаты (они обычно обозначаются аббревиатурой АТФ), которые постоянно движутся внутри клетки, ожидая, когда потребуется их участие. Эти молекулы исходят из больших цилиндрических трубочек внутри клеток, которые называются митохондриями. Митохондрии производят молекулы АТФ, используя для этого энергию, которая получается при сгорании глюкозы.
Если вы проникнете еще дальше в глубь клетки, то увидите оболочку, которая окружает ядро. В этой оболочке также имеются отверстия, через которые в ядро клетки входят и выходят различные молекулы. Если же вы проникнете через какое-то из этих отверстий в клеточное ядро, то увидите там хромосомы, внутри которых находятся цепочки ДНК. Двигаясь вдоль хромосом, вы сможете убедиться, что они содержат тысячи различных генов.
Придя в некоторое замешательство от увиденного, вы начинаете понимать, насколько же сложен механизм функционирования одной-единственной клетки. Каждая клетка — это основа жизни, и в каждом из наших тел содержатся миллиарды таких клеток. В этой книге я постараюсь рассказать о тайнах работы клеток и показать, как функционирует сообщество клеток в качестве единого организма.
Но сначала о том, как были открыты клетки.
Как наука прояснила основные факторы жизни
В древности было принято давать простые объяснения вопросам жизни и смерти, действующим в обществе законам и тому, что такое хорошо и что такое плохо. Делалось это в основном в русле религиозных воззрений, которые передавались из поколения в поколение. В самых разных культурах это находило отражение в мифах и легендах, ритуальных песнопениях и танцах, в писаных и неписаных законах. Затем появились греки. Они ничего не знали о клетках, но они пытались понять устройство жизни, особенно тогда, когда что-то нарушалось и люди заболевали.
Наука обязана своим зарождением древним грекам, которые попытались понять устройство мира, основываясь на логике и доказательствах. Другие человеческие общества, например китайское, располагали замечательными технологиями, однако до создания науки они не додумались. Впрочем, в области биологии древним грекам не удалось добиться значительных успехов, поскольку обыденные представления часто противоречат научным фактам — они помешали грекам сформировать идею о том, что в основе жизни лежит деятельность клеток.
При этом Аристотелю удалось совершить небывалый прогресс в области логики, Евклиду — в сфере математики, а Архимеду, возможно самому великому из древнегреческих ученых, — в области физики и механики. Некоторые из древнегреческих ученых были сторонниками атомарной теории устройства мира, считая, что мир создан из мельчайших частиц. Аристотель эту идею отвергал, полагая, что материя — едина.
Древние греки полагали, что все создано на основе четырех элементов: земли, огня, воды и воздуха. На основе этих представлений они разработали теорию о том, что внешний вид и функционирование человеческого тела также базируются на четырех субстанциях — черной желчи, желтой желчи, флегмы и крови. Представление о том, что все болезни происходят от избытка либо недостатка одной из этих четырех субстанций, перешла от древних греков к римским врачам и философам. Гиппократ, живший в Греции за четыреста лет до Рождества Христова, был одним из приверженцев этой теории и одним из первых отверг все остальные объяснения заболеваний, в которых было куда больше мистики.
Со времен Гиппократа и вплоть до восемнадцатого столетия медицина опиралась на теорию четырех субстанций. Древние греки и римляне, а вслед за ними западные ученые, усвоившие классическую философию, полагали, что в зависимости от способа питания и физической активности каждая из этих субстанций может то прибывать, то убывать. Если в ком-то наблюдался избыток какой-то субстанции, то от этого страдали и характер, и здоровье. Все это привело к тому, что на протяжении двух тысяч лет врачи лечили людей кровопусканием. В действительности такое лечение имело нулевой врачебный эффект, если не считать, конечно, эффекта плацебо, когда сам пациент начинает верить, что польза есть.
Что касается зарождения жизни, то одни ученые считали, что она возникла в воде, а другие — что в воздухе. Греческий философ Эмпедокл полагал, что растения и животные появились в результате воздействия огня, который вырвал из глуби земли бесформенные куски материи и часть из них затем превратилась в людей. За всеми этими идеями скрывалось представление о том, что жизнь — это своего рода особая сила, которая может одухотворить любой материальный объект, сделать его живым. Это соответствовало церковным воззрениям позднейшего времени. И если бы не был изобретен микроскоп, мы, возможно, придерживались бы их до сих пор.
Другое древнее представление о жизни, которое пришло к нам из Китая и до сих пор используется в теориях, связанных с практикой акупунктуры, основывается на убеждении в том, что в человеческом теле содержится жизненная сила (ее называют «ци» или «ки»), циркулирующая по невидимым каналам. В соответствии с этой теорией все болезни вызываются нарушениями в циркуляции «ци». До сих пор в ходу утверждения о том, что точки иглоукалывания представляют собой те области, которые влияют на циркуляцию жизненной энергии; воздействуя на них, можно вылечить различные заболевания.
Клеткам удавалось удивительно долго скрывать от нас свои тайны. Примерно две тысячи лет назад древние римляне, экспериментируя с формами стекла, толстыми в середине и тонкими по краям, обнаружили, что, когда подобные «линзы» подносят к предметам, те выглядят крупнее. Однако стеклянные линзы так и не нашли применения вплоть до тринадцатого столетия, когда в Италии стали изготавливать очки для коррекции зрения.
Первые микроскопы, которые были просто увеличительными стеклами, состояли из одной линзы, обладающей способностью увеличивать предметы примерно в десять раз. Этого было недостаточно, чтобы увидеть клетку, хотя было очень интересно смотреть сквозь такое увеличительное стекло на мух и других крохотных насекомых. Решительный прорыв вперед произошел в 1590 году, когда два голландских мастера, занимавшихся изготовлением стекол для очков, догадались поместить сразу несколько линз в трубку и тем самым сделали важнейшее открытие. Предмет при взгляде через такую трубку увеличивался многократно — гораздо больше, чем под одним увеличительным стеклом. Так был изобретен прообраз микроскопа.
Первым человеком, который увидел клетку и назвал ее так — хотя и не осознал в тот момент, что же именно он сумел разглядеть, — стал Роберт Гук. Это случилось в 1665 году. Будучи еще совсем юным, Гук обладал блестящими способностями быстро схватывать все новое. К тому же он от природы обладал умением конструировать различные приспособления. Закончив Вестминстерскую школу в Лондоне, он поступил в колледж Крайст-Черч в Оксфорде. Там он научился разбираться в широком спектре научных дисциплин, включая астрономию, биологию, физику и архитектуру, и заслужил репутацию умелого изготовителя инструментов для проведения научных исследований. В 1663 году он стал членом Королевского научного общества в Лондоне, а позднее — его председателем.