Шкалы наименований и порядка называют «не метрическими», намекая этим на то, что они не вполне относятся к метрологии. Иногда их называют «шкалами оценивания». Смысл названия ясен, но надо помнить, что в некоторых других областях, например в физике и математике, слово «оценка» имеет другой, вполне числовой смысл. Социологи называют шкалу наименований — номинальной, а шкалу порядка — ранговой.
Между разными шкалами может устанавливаться соотношение, причем если одна из шкал не метрическая, то соотношение имеет характер договоренности. Например, есть международное соглашение о соответствии шкалы Бофорта скоростям ветра (выраженным в м/с), есть соответствие 12-балльной шкалы силы землетрясений (по разрушениям в эпицентре) шкале магнитуд (энергий землетрясения) и глубины очага.
Неметрические шкалы могут быть непрерывными (цветности, цвета, твердости) и дискретными (ветер, волнение, шкала землетрясения). Единой шкалы белизны нет, пользуются шкалой цветности, а для целлюлозы и текстиля белизну определяют по коэффициенту отражения в синей части спектра (на волне 457 нм). Есть специальные шкалы цвета (нефтепродуктов, реактивов, смол, воды, пива, лаков и красок).
Следующие три группы шкал — разностей, отношений, абсолютные — называют «метрическими».
Шкалы разностей или интервалов состоит из одинаковых интервалов, имеет условную единицу и условное начало. Таковы календари, многие шкалы температур (Реомюра, Фаренгейта, Цельсия).
В шкалах отношений есть естественный ноль. Например, такова шкала абсолютных температур, шкалы длин, масс, токов, напряжений, мощностей. Для некоторых из таких шкал имеет смысл суммирование значений, например, массы, длины и деньги можно суммировать при решении определенных задач, а например температуры суммировать бесполезно (если не суммировать стоящие за температурами энергии). Да и деньги гражданина N и гражданина M аддитивны или нет в зависимости от того, собираются ли они вместе сами понимаете что — или нет.
Наконец, есть абсолютные шкалы. Это шкалы безразмерных величин, например, кпд. Разновидность абсолютных шкал — целочисленные, с единицей «штука». Заряд в штуках электронов, энергия в штуках квантов определенного излучения, или гибрид — поток в квантах/сек.
У социологов тоже есть метрические шкалы — интервальная и пропорциональных оценок. Интервальная — это, например, шкала возрастов или доходов, то шкала, на которой есть интервалы возрастов — от и до, от следующего до следующего и так далее. Шкала пропорциональных оценок — это шкалы с естественным нулем: ноль дохода, ноль количества тех или иных поступков и так далее.
Величину, которую мы измерили, мы можем и как-то преобразовать. Например, вместо некой величины рассматривать обратную величину, или поделить ее на какую-то условную единицу («обезразмерить») или поделить и взять от этого «обезразмеренного» логарифм. Понятно, в каких ситуациях такая процедура полезна — например, переход к шкале логарифмов, если исходная величина изменяется в широких пределах, переход к обратным величинам — если в предполагаемую зависимость входит именно обратная величина. Классический пример — представление эмиссии или испарения в виде зависимости их логарфма от обратной температуры. При этом получается прямолинейная зависимость с легко интерпретируемым наклоном (энергия активации). В этом месте метрология граничит с представлением данных.
Еще одна группа шкал — биофизические. Это шкалы, сконструированные так, чтобы по значениям величин можно было примерно предсказать реакцию биологического объекта. Например, таковы шкалы громкости. Опять же, здесь метрология сильно граничит с физиологией и рассказывать об этом можно долго.
Известна великая философская проблема «качественного и количественного». Философы написали на эту тему тома. Так вот, по нашему скромному метрологическому мнению «качественное» — это неметрические шкалы, а «количественное» — метрические. И все.
Если словарь физики — это величины, то правила языка — это правила написания уравнений и оперирования с величинами, а сами уравнения, связывающие величины — тексты. Правил много, среди них есть формальные (например, ограничения на размерности и преобразование размерностей при операциях) и неформальные (например, использование величин из одного раздела физики, или относящихся к одному типу процессов). Скажем, при умножении, делении и возведении в степень преобразуется так же, при сложении и вычитании не изменяется. Связь размерностей с допустимостью операций — складывать и вычитать можно величины одинаковой размерности.
Выбор системы единиц можно сделать по-разному. Он зависит от легкости построения эталона, отвечающего условиям стабильности, идентичности эталонов одного уровня и удобства передачи подчиненным средствам измерений. Выбор основных единиц и эталонов для них изменяется со временем по мере того, как новые методы измерений и эталоны, совершенствуясь, становятся лучше старых. На нижних этажах метрологической пирамиды, на уровне конкретного производства или конкретного исследования это неощутимо.
Сейчас стандартна система СИ (SI, фр. Systеme International d'Unitеs) — метр, килограмм, секунда, ампер, кельвин, моль, кандела. Метр определяется через секунду и скорость света как расстояние проходимое светом (в вакууме) за определенное время, килограмм — искусственный эталон, секунда определяется через частоту излучения определенного перехода в атоме, ампер — через силу взаимодействия при определенной геометрии токов, то есть от метра и килограмма, кельвин — от тройной точки воды, моль — от числа атомов в килограмме определенного изотопа, кандела — искусственный эталон. В метрологии постоянно идет обсуждение и совершенствование системы единиц и эталонов и их развитие системы. Можно предположить, что в ближайшее годы произойдет исключение моля из основных единиц, далее — переход от канделы к люмену, то есть к энергии, еще позже возможен переход к естественному эталону массы, то есть массе атома. Но поскольку построить цепочку приборов, передающих массу от атома к технически интересным значениям пока не представляется возможным, предполагается создать эталон килограмма на основе метра и чистого вещества, то есть в виде шара известного диаметра из очень чистого кремния.
Подробнее об эталонах рассказано ниже, сейчас же важно следующее. Изменение эталонов и определений делается так, чтобы не требовать переделки всех реально эксплуатирующихся приборов, но так, чтобы обеспечить возможность дальнейшего увеличения точности (в том числе и стабильности) и легкости переносимости.
Производные единицы таковы: радиан и стерадиан (общеизвестное геометрическое определение), давление (определяется через силу и площадь), работа и энергия (определяется через силу и путь), мощность (определяется через энергию и время), заряд (определяется через ток и время), напряжение и потенциал (определяется через заряд и работу), напряженность электрического поля (определяется через силу и заряд), емкость (определяется через заряд и потенциал), сопротивление (определяется через напряжение и ток), магнитный поток (определяется через заряд, протекший по контуру), магнитная индукция (определяется через поток и площадь), напряженность магнитного поля (определяется через ток и метр), индуктивность (определяется через ток и индуктивность). Все эти определения есть в учебнике даже не метрологии, а физики.
Методы и средства измерений: термины и смыслы
Измерения бывают прямые и косвенные. На самом деле то, что обычно считается прямыми измерениями, является косвенными, осуществляемыми посредством сложной цепочки преобразований. Например, в стрелочном приборе это напряжение-ток-сила-момент-угол поворота. Если считать человека прибором, то прямым измерением является только сравнение цвета, насыщенности и яркости глазом, температуры — кожей, громкости и спектра звука ухом, остроты кнопки попой, да сексапильности лица иного пола не тем, чем вы подумали, а производной от частоты пульса по времени.
Измерения бывают совокупные, когда измеряются однородные величины и производится вычисление, и совместные, когда измеряются неоднородные величины и производится вычисление. Большой разницы между ними нет, а от всех прочих они отличаются тем, что приходится иначе вычислять погрешности. На самом же деле, в любом измерении принимает участие — в метрологическом смысле, то есть влияя на точность — много величин, и погрешности всех их надо учитывать. Другое дело, что когда мы берем в руки прибор, на котором написано «+/- 1 %», то погрешности всей названной выше («напряжение-ток-сила-момент-угол поворота») цепочки уже посчитаны разработчиком прибора и засунуты внутрь этого 1 %.