Шумы, порожденные аппаратурой, как бы маскируются под космическое радиоизлучение. Они похожи друг на друга и усиливаются в приемнике одновременно. Этим обстоятельством ограничивается чувствительность современных радиотелескопов. Однако с помощью большого усложнения аппаратуры удается зарегистрировать сигналы в сто раз более слабые, чем шумы аппаратуры.
При изучении слабых источников космических радиоволн применяют различные довольно сложные и хитроумные методы и устройства, позволяющие уловить неуловимое. И здесь победа остается в конце концов за человеком. Рост техники радиоастрономических исследований происходит очень бурно, и с каждым годом радиотелескопы становятся все более и более чувствительными.
Впрочем, уже и сейчас чувствительность радиотелескопов вызывает удивление. Если сравнить энергию излучения, воспринимаемую самыми лучшими из современных радиотелескопов, с энергией видимого света, посылаемого звездами, то окажется, что радиотелескопы в сотни раз чувствительнее гигантских телескопов-рефлекторов. Среди всевозможных приемников электромагнитных волн радиотелескопы не имеют себе равных.
О зоркости радиотелескопов
Благодаря сложным оптическим явлениям лучи от звезды, уловленные телескопом, сходятся не в одной точке (фокусе телескопа), а в некоторой небольшой области пространства вблизи фокуса, образуя так называемое фокальное пятно. В этом пятне объектив телескопа конденсирует электромагнитную энергию светила, уловленную телескопом. Если взглянуть в телескоп, звезда покажется нам не точкой, а кружочком с заметным диаметром. Но это не настоящий диск звезды, а лишь ее испорченное изображение, вызванное несовершенством телескопа. Мы видим созданное телескопом фокальное пятно.
Чем больше диаметр объектива телескопа, тем меньше фокальное пятно. Следовательно, большие телескопы обладают и большой «зоркостью». Но последняя зависит еще и от длины волны принимаемого излучения.
Чем меньше длина волны, тем меньше и размеры фокального пятна.
С величиной фокального пятна тесно связана разрешающая способность телескопов. Так называют наименьшее угловое расстояние между двумя источниками излучения, которые данный телескоп дает возможность различить в отдельности. Если, например, в двойной звезде обе звезды так близки на небе друг к другу, что их изображения, создаваемые телескопом, попадают практически внутрь одного фокального пятна, двойная звезда покажется в телескоп одиночной.
Оптические телескопы обладают весьма большой разрешающей способностью. В настоящее время наилучшие из оптических телескопов способны «разделить» двойные звезды с расстоянием между составляющими в 0,1 секунды дуги! Под таким углом виден человеческий волос на расстоянии 30 м.
Радиотелескопы воспринимают весьма длинноволновое излучение. Поэтому фокальное пятно в радиотелескопах огромно. И соответственно разрешающая способность этих инструментов весьма низка. Оказывается, например, что радиотелескоп с диаметром зеркала 5 м при длине радиоизлучения 1 м способен разделить источники излучения, если они отстоят друг от друга больше чем на десять градусов!
Десять градусов — это двадцать видимых поперечников Луны. Значит, указанный радиотелескоп не способен «разглядеть» в отдельности такие мелкие для него небесные светила, как Солнце или Луна.
Ясно, что низкая разрешающая способность обычных небольших радиотелескопов — большой недостаток; даже при огромных размерах зеркала она, как правило, уступает разрешающей силе человеческого глаза (не говоря уже об оптических телескопах). Как же можно устранить это препятствие?
Физикам уже давным-давно известно явление сложения волн, названное ими интерференцией. В школьном учебнике физики подробно описано, какое значение имеет интерференция на практике. Оказывается, интерференцию можно использовать в радиоастрономии.
Вообразим, что одновременно из двух источников распространяются две волны. Если они, как говорят физики, находятся в противоположных фазах, то есть «горб» одной приходится как раз против «впадины» другой, обе волны «погасят» друг друга, и колебания среды прекратятся. Если это световые волны — наступит тьма, если звуковые — тишина, если волны на воде — полный покой.
Может случиться, что волны находятся в одинаковых фазах («горб» одной волны совпадает с «горбом» другой). Тогда такие волны усиливают друг друга, и колебания среды будут совершаться с удвоенной интенсивностью.
Представим себе теперь устройство, называемое радиоинтерферометром (рис. 40). Это два одинаковых радиотелескопа, разделенных расстоянием (базой) и соединенных между собой электрическим кабелем, к середине которого присоединен радиоприемник. От источника радиоизлучения на оба радиотелескопа непрерывно приходят радиоволны. Однако тем из них, которые попадают на левое зеркало, приходится проделать несколько больший путь, чем радиоволнам, уловленным правым радиотелескопом. Разница в путях, называемая разностью хода, равна отрезку АБ. Нетрудно сообразить, что если в этом отрезке укладывается четное число полуволн улавливаемого радиоизлучения, то «левые» и «правые» радиоволны придут в приемник с одинаковой фазой и усилят друг друга. При нечетном числе полуволн произойдет обратное — взаимное гашение радиоволн, и в приемник радиосигналы вовсе не поступят.
Рис. 40. Схема радиоинтерферометра (d — его база, т. е. расстояние между радиотелескопами, угол характеризует направление на источник радиоволн).Обратите внимание: при изменении направления на источник излучения меняется и разность хода.
Достаточно при этом (что очень важно!) лишь весьма незначительное изменение угла, чтобы «гашение» волн сменилось их усилием или наоборот, на что сразу же отзовется весьма чувствительный радиоприемник.
Радиоинтерферометры делают, как правило, неподвижными. Но ведь Земля вращается вокруг своей оси, и поэтому положение светил на небе непрерывно меняется. Следовательно, в радиоинтерферометре постоянно будут наблюдаться периодические усиления и ослабления радиопередачи от наблюдаемого источника космических радиоволн.
Радиоинтерферометры гораздо «зорче» обычных радиотелескопов, так как они реагируют на очень малые угловые смещения светила, а значит, и позволяют исследовать объекты с небольшими угловыми размерами. Иногда радиоинтерферометры состоят не из двух, а из нескольких радиотелескопов. При этом разрешающая способность радиоинтерферометра существенно увеличивается. Есть и другие технические устройства, которые позволяют современным «радиоглазам» астрономов стать очень «зоркими», гораздо более зоркими, чем невооруженный человеческий глаз!
В феврале 1976 года советские и американские ученые осуществили интересный эксперимент — радиотелескопы Крымской и Хайсптекской (США) обсерваторий в этом опыте играли роль «глаз» исполинского радиоинтерферометра, а расстояние во много тысяч километров между этими обсерваториями было его базой. Так как база была очень велика и космические радиообъекты наблюдались с разных континентов, достигнутая разрешающая способность оказалась поистине фантастической — одна десятитысячная доля секунды дуги! Под таким углом виден с Земли на Луне след от ноги космонавта! Позже к этим экспериментам присоединились и австралийские ученые, так что астрономы «взглянули» на космические радиоисточники сразу с трех континентов. Результаты оправдали затраченные усилия: в ядрах галактик и квазарах обнаружены взрывные процессы необычайной активности, причем в ряде случаев наблюдаемая скорость разлета космических облаков в квазарах, по-видимому, превосходит скорость света!
Таким образом, новая техника поставила перед наукой и новые проблемы принципиального характера. Достигнутая ныне разрешающая способность радиоинтерферометров — это еще не предел. В будущем, вероятно, радиотелескопы станут еще зорче.
Кстати сказать, и в оптической астрономии используют интерферометры. Их присоединяют к крупным телескопам, чтобы измерить реальные поперечники звезд. В обоих случаях интерферометры играют роль своеобразных «очков», позволяющих рассмотреть важные подробности в окружающей нас Вселенной.
Но оптические интерферометры по зоркости значительно уступают, тем, которые употребляются ныне в радиоастрономии.
До сих пор речь шла о пассивном изучении космических радиоволн. Они улавливаются радиотелескопами, и задача астронома заключается лишь в том, чтобы наилучшим образом расшифровать эти сигналы, получить с их помощью как можно больше сведений о небесных телах. При этом исследователь никак не вмешивается в ход изучаемого им явления — он лишь пассивно наблюдает.