MyBooks.club
Все категории

Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики. Жанр: Научпоп издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
274
Читать онлайн
Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики краткое содержание

Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - описание и краткое содержание, автор Алекс Беллос, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики читать онлайн бесплатно

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - читать книгу онлайн бесплатно, автор Алекс Беллос

Постулат о параллельных говорит о том, что кроме геометрии поверхностей существует еще и геометрия поверхностей сферических. «Начала» имели дело с плоскими поверхностями, и в течение 2000 лет именно они оставались в фокусе математических изысканий. Сферические же поверхности, например поверхность Земли, представляли тогда больший интерес для штурманов и астрономов, чем для теоретиков. Лишь к началу XIX века математики создали теорию, которая охватывала как плоские, так и сферические поверхности, а произошло это только после того, как ученые познакомились с поверхностями третьего типа — гиперболическими.

* * *

Среди вознамерившихся вывести постулат о параллельных из первых четырех постулатов и тем самым доказать, что это вовсе не постулат, а теорема, решительнее всех был настроен, пожалуй, Янош Бойяи (1802–1860) — студент из Трансильвании, обучавшийся инженерному делу. Его отец Фаркаш — тоже математик! — исходя из собственного неудачного опыта хорошо представлял себе, какие испытания уготованы сыну на сем пути. «Бога ради, заклинаю тебя, брось это дело, — убеждал он сына. — Оно опаснее, чем чувственные удовольствия, поскольку способно точно так же поглотить все твое время и лишить тебя здоровья, душевного спокойствия и счастья в жизни». Но Янош упрямо игнорировал отцовские увещевания; более того, в своем бунтарстве он был даже готов рассматривать возможность ложности этого евклидовского постулата! Не надо забывать, что для математиков «Начала» были чем-то вроде Библии для христиан — книгой, содержащей непререкаемую, священную истину. И хотя вопрос о том, является ли пятый постулат аксиомой или теоремой, обсуждался, и довольно активно, никто до Бояйи-младшего не осмеливался предположить, что это утверждение Евклида не совсем верно. Прошло время, и оказалось, что постановка этого вопроса открыла окно в новый мир.

Постулат о параллельных утверждает, что для любой заданной прямой и точки вне ее существует самое большее одна параллельная прямая, проходящая через указанную точку. Яношу хватило смелости предложить, что для любой заданной прямой и точки вне ее имеется более одной параллельной прямой, проходящей через эту точку. Хотя было не слишком ясно, как представить себе поверхность, для которой это утверждение верно, Янош понял, что геометрия, следующая из этого утверждения, взятого вместе с первыми четырьмя постулатами, по-прежнему остается математически последовательной. Это было революционным открытием, и Янош сумел осознать его судьбоносное значение. В 1823 году Янош написал отцу письмо, в котором заявлял: «Из ничего я создал новую вселенную».

На руку Яношу, вероятно, было то обстоятельство, что он работал один, и вне стен какого-либо математического заведения, и потому был в меньшей степени зажат в рамки традиционных воззрений. Более того, даже уже совершив свое великое открытие, он не думал, что станет математиком. После окончания университета Бояйи вступил в Австро-Венгерскую армию, где, по имеющимся отзывам, проявил себя среди сослуживцев как один из лучших фехтовальщиков и танцоров. Кроме этого, он был замечательным музыкантом и однажды, вызвав на дуэль сразу 13 офицеров, поставил условие, что в случае победы сыграет проигравшему пьесу на скрипке.

А тем временем другой, неизвестный Яношу математик, живший в еще большем, чем Трансильвания, удалении от европейских научных центров, тоже размышлял о пятом постулате. Он неуклонно продвигался вперед, несмотря на то что никто из коллег не поддерживал и не принимал его работы. В 1826 году профессор Казанского университета Николай Иванович Лобачевский (1792–1856) направил свою статью, в которой подвергал сомнению истинность постулата о параллельных, в журнал «Записки физико-математического отделения». Статью (она называлась «О началах геометрии») не приняли, после чего Лобачевский решил напечатать ее в университетском «Казанском вестнике», где ее, естественно, почти никто не заметил. Позже петербургские профессора подвергли его работу жесточайшей критике.

Ирония судьбы — в истории низвержения пятого постулата Евклида с пьедестала незыблемой истины был еще один драматичный момент: за несколько десятилетий до Яноша Бойяи и Николая Лобачевского еще один ученый сделал то же самое открытие, причем произошло это в самом сердце математической науки; однако этот человек не стал обнародовать свои результаты среди коллег. Почему Карл Фридрих Гаусс — величайший математик своего времени[70] — решил сохранить свою работу о постулате о параллельных в тайне, до сих пор точно не знает никто. Принято считать, что он не хотел вступать в распри с университетскими коллегами по поводу авторитета Евклида.

Однако, прочитав о результатах Яноша, опубликованных в 1831 году в приложении к книге его отца Фаркаша, Гаусс дал понять, что он еще раньше высказал предположение о возможной неправомерности постулата о параллельных. Гаусс написал своему старому университетскому товарищу Фаркашу письмо, в котором отозвался о Яноше как о «гении первой величины», однако же добавил, что не может воздать должной похвалы его замечательному научному открытию: «Ибо хвалить его означало бы хвалить самого себя. Содержание его труда целиком совпадает с моими собственными открытиями, некоторым из которых исполнилось уже 30 или 35 лет. Поначалу я собирался записать все это, дабы оно по крайней мере не ушло в небытие вместе со мной. Поэтому приятной неожиданностью стало известие, что я избавлен от сего труда, и в особенности я рад, что не кто иной, как сын моего старого друга, помог мне в этом деле». Узнав, что первым к цели пришел Гаусс, Янош очень огорчился. Когда же, уже годы спустя, он узнал, что русский математик Лобачевский тоже опубликовал доказательство раньше него, он был просто потрясен, а потом уверовал в то, что Лобачевский — вымышленный персонаж, изобретенный Гауссом в качестве изощренной уловки с целью лишить его, Яноша, первенства.

* * *

Финальный аккорд в исследования пятого постулата Гаусс сделал незадолго до своей смерти. Будучи уже серьезно больным, он выбрал для одного из своих самых способных учеников, 27-летнего Бернхарда Римана (1826–1866) — такую тему пробной лекции: «О гипотезах, лежащих в основании геометрии». Риман — болезненно застенчивый сын лютеранского пастора, готовясь к лекции, поначалу испытывал довольно серьезные затруднения, зато страдания были не напрасны — его лекции было суждено произвести революцию в математике. Впоследствии он способствовал перевороту и в физике — предложенные им новаторские идеи оказались теми ценнейшими семенами, из которых потом выросла общая теория относительности Эйнштейна.

Лекция Римана, прочитанная им в 1854 году, ознаменовала собой тектонический сдвиг в понимании геометрии, возникающий в результате низвержения постулата о параллельных — Риман дал описание всеобъемлющей теории, включающей как Евклидовы, так и не Евклидовы идеи. Ключевой концепцией, лежавшей в основе теории Римана, была кривизна пространства. Когда поверхность имеет нулевую кривизну, она является плоской, или евклидовой, и тогда выполняется все, что получено в «Началах». Когда же поверхность искривлена, то есть имеет положительную или отрицательную кривизну, она — неевклидова, и применительно к ней написанное в «Началах» неверно.

Простейший способ понять, что такое кривизна, учит нас Риман, — рассмотреть то, что происходит с треугольниками. На поверхности нулевой кривизны сумма углов треугольника — 180 градусов. На поверхности положительной кривизны эта сумма превышает 180 градусов. На поверхности отрицательной кривизны углы треугольника дают в сумме менее 180 градусов.

Сфера имеет положительную кривизну. Это можно понять, рассматривая сумму углов треугольника в левой части приведенного ниже рисунка: треугольник там составлен из отрезков экватора, Гринвичского меридиана и линии, идущей по 73-му градусу долготы к западу от Гринвича (эта долгота проходит через Нью-Йорк). Оба угла, под которыми линии долготы пересекают экватор, равны 90 градусам, так что сумма всех трех углов должна быть больше 180 градусов.

А поверхности какого типа имеют отрицательную кривизну? Другими словами, где искать те треугольники, углы которых в сумме дают меньше 180 градусов? Откройте пачку картофельных чипсов «Принглс», и вы поймете где. Нарисуйте треугольник на седловой части чипса (для чего можно использовать тюбик с нежной французской горчицей) — треугольник будет выглядеть как «вогнутый» в сравнении с «выпуклым» треугольником, который мы наблюдали на сфере. Ясно, что его углы в сумме дают менее 180 градусов.

Поверхность отрицательной кривизны называется гиперболической. Итак, поверхность чипса «Принглс» — гиперболическая. Впрочем, чипс — это всего лишь первый шаг к пониманию гиперболической геометрии, потому что у него есть край. Стоит только показать математику край, как он тут же захочет выйти за его пределы.


Алекс Беллос читать все книги автора по порядку

Алекс Беллос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Алекс в стране чисел. Необычайное путешествие в волшебный мир математики отзывы

Отзывы читателей о книге Алекс в стране чисел. Необычайное путешествие в волшебный мир математики, автор: Алекс Беллос. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.