Магнитное поле в области радиационных поясов Земли близко к дипольному, оно представляет собой именно такую ловушку. Как и всякая ловушка, слишком энергичную для себя частицу дипольное поле Земли удержать не сможет: она пройдет через него по какой–то плавной кривой. Пути же захваченных полем частиц выглядят совсем иначе. Это спирали со множеством витков, навитые на силовые линии магнитного поля (рис. 2). Движение каждой отдельно взятой частицы, захваченной дипольным магнитным полем Земли, идет по стандартному образцу. Если понаблюдать за частицей в течение некоторого довольно короткого времени, то можно заметить, что частица описала почти окружность — это один виток спирали. Проследив за ее движением дольше, мы увидим, что этот виток «качается» вдоль магнитной силовой линии, уходя на определенное расстояние от плоскости экватора, а затем возвращаясь к ней. Через несколько часов наблюдений станет ясно, что вся спираль постепенно поворачивается вокруг Земли.
Рис. 2. Движение заряженной частицы, захваченной дипольным магнитным полем
Если такая частица сталкивается с другой или попадает под влияние «посторонних» полей — электрических и магнитных, характер ее движения изменяется. Теперь она может оказаться на силовой линии, проходящей на другом расстоянии от Земли, или увеличить размах своих качаний вдоль силовой линии. Если качания становятся очень уж большими, частица может подойти слишком близко к Земле, войти в плотные слои атмосферы и потеряться в них. Поэтому в космической ловушке может находиться только та частица, которая в своих качаниях не слишком далеко уходит от плоскости экватора.
Представим себе теперь, что в ловушке находится не одна, а много частиц. Сталкиваясь, они заставляют друг друга уходить в атмосферу (специалист скажет: частицы высыпаются в атмосферу). В конце концов столкновения станут редкими, и оставшиеся частицы уже можно будет рассматривать как отдельные, независимые друг от друга. Они все окажутся сосредоточенными вблизи плоскости экватора и как бы поясом охватят Землю. Так была понята природа радиационных поясов — совокупности заряженных частиц, по существу не связанных друг с другом.
В 1959 году космофизик Т. Голд назвал область, в которой кружатся эти частицы, магнитосферой.
Прошло всего несколько лет, и выяснилось, что все не так просто. Оказалось, что, кроме сравнительно небольшого количества частиц, составляющих радиационные пояса, в космосе есть еще множество частиц меньших энергий, радиационные пояса как бы погружены в пространство, заполненное ими. Эти малоэнергичные частицы уже нельзя было считать независящими друг от друга. Больше того, оказалось, что все процессы в ближнем космосе так или иначе связаны с этими частицами. Поведение их выглядело сложным и непонятным. Это они, вторгаясь в верхние слои атмосферы, вызывают самые эффектные формы полярных сияний: и резкие, четкие дуги, и цветной мятущийся «пожар небес». Частицы же радиационных поясов отвечают лишь за невзрачное свечение, которое иногда появляется вслед за особенно разбушевавшимися сияниями с экваториальной их стороны. На эти относительно малоэнергичные частицы — плазму околоземного пространства — постепенно сместилось основное внимание исследователей.
Оказалось еще, что наша планета все время находится в потоке плазмы, непрерывно идущем от Солнца, — в потоке солнечного ветра. Солнечный ветер — один из красивейших терминов науки. Не удивительно, что он нравится журналистам: они дружно используют его в названиях статей, очерков, телепередач и других материалов о космофизиках. Существование ветра было предсказано теоретиками. Об эпизодических потоках солнечной плазмы писали известный английский физик С. Чепмен и его сотрудник В. Ферраро в 1931–1933 годах, на постоянное присутствие ветра указали советский геофизик Е. Пономарев и американский астрофизик Е. Паркер в 1957–1958 годах.
Космические корабли выявили реальное распределение магнитного поля в околоземном пространстве. Оказалось, что, начиная с расстояний около семи земных радиусов от центра планеты, реальное магнитное поле сильно отличается от дипольного поля, создаваемого токами в глубине нашей Земли. Это говорит о существовании в ближнем космосе других токов, искажающих магнитное поле внутренних токов планеты. Это понятно: ведь ближний космос заполнен плазмой — веществом со свободными носителями электрических зарядов, в плазме могут течь токи (причем вовсе не обязательно в направлении электрического поля).
Магнитосфера (в современном понимании это область, занятая магнитным полем, силовые линии которого уходят под поверхность Земли) оказалась вовсе не «сферой». Скорее, она похожа на комету с хвостом (рис. 3). Хвост магнитосферы — это тоже термин науки. Хвост тянется очень далеко в ночную, противосолнечную, сторону Земли; он уходит на тысячи земных радиусов — это миллионы километров (для сравнения: расстояние до Луны — 384000 километров). Со стороны Солнца граница магнитосферы — магнитопауза — обычно отстоит от центра Земли на расстояние 10 земных радиусов (то есть на 65000 километров), с «боков» — до 16 радиусов (106000 километров).
Рис. 3. Сечение магнитосферы плоскостью, проходящей через магнитные полюса Земли и центр Солнца (изображены магнитные силовые линии)
Ориентироваться в строении ближнего космоса довольно просто. Надо только помнить основной принцип: передвижение частиц на значительное расстояние поперек магнитного поля затруднено.
Что при этом получается?
По отношению к солнечному ветру магнитное поле, созданное токами внутри планеты, представляет собой препятствие. Солнечный ветер обтекает его. Поэтому магнитосфера занимает полость, «вырезанную» в потоке солнечной плазмы. Действительно, плотность частиц, наблюдаемая в этой полости, значительно меньше, чем в солнечном ветре. Естественное исключение составляет сама Земля и ее ближайшие окрестности, включая так называемую плазмосферу — область плотной и холодной плазмы, прилегающую непосредственно к нейтральной атмосфере Земли (в районе средних и низких широт на поверхности планеты).
Нас не удивит, конечно, что Земля расположена в головной части этой полости: при обтекании препятствия быстрым потоком за препятствием всегда остается более или менее вытянутое разреженное (по сравнению с обтекающим потоком) пространство.
Очевидно, наибольшему искажению должны подвергнуться периферийные области дипольного магнитного поля Земли, другими словами, те его линии, которые уходят на большие расстояния от планеты. Такие линии пронизывают поверхность Земли вблизи ее магнитных полюсов. Они–то и заполняют хвост реальной магнитосферы.
Когда–то промелькнул в печати такой рисунок: двое научных сотрудников стоят возле лабораторного стола, на котором лежит шарик со щеточкой волос «на макушке». Тот сотрудник, что повеселее, говорит другому, озабоченному и лысому:
— Скажи, ну кому нужен бильярдный шар с растущими на нем волосами?
Нам сейчас нужен такой шар: на нем легко показать, как устроена наша магнитосфера. Пусть только волосы у шара растут двумя чубами, длинными, как у запорожцев, по обоим концам одного диаметра. Можно было бы с силой метнуть такой шарик, чтобы встречный поток воздуха сдул чубы назад и свел концы их вместе. Летящий волосатый шарик со стороны очень похож на магнитосферу, можно сказать, это ее объемная модель. Встречный поток для реальной магнитосферы — солнечный ветер. Шар представляет ту ее область, где магнитное поле еще не сильно отличается от дипольного. Здесь находятся радиационные пояса Земли, погруженные в разреженную плазму. Волосы чубов — магнитные силовые линии полярных областей Земли. Две пряди — одна из силовых линий, идущих от Земли, из ее Южного полушария, другая — из линий, направленных к Земле и входящих в нее в полярном районе Северного полушария, — составляют хвост реальной магнитосферы. В плоскости, проходящей через магнитные полюса Земли, получается та фигура, которую мы видели на рис. 3.
Обратим теперь внимание на область, где проходит поверхность раздела между внутренними дипольными магнитными силовыми линиями, не искаженными потоком солнечного ветра, и внешними, уходящими в хвост. Можно ожидать, что здесь должны наблюдаться какие–то особенные явления, которых нет в других частях магнитосферы. Точки, в которых силовые линии, образующие эту поверхность, пронизывают Землю как в Северном, так и в Южном полушарии, ложатся кольцом, охватывающим магнитный полюс. Вдоль этих колец можно тоже ожидать каких–то своеобразных явлений. И действительно, именно здесь горят полярные сияния! Каждое кольцо — не что иное, как авроральный овал.
Теперь понятно, какие черты ближнего космоса отражает само существование целостного аврорального овала. Он может быть растянутым, далеко отходить от магнитного полюса, может быть, наоборот, сжатым. Но он постоянно присутствует на полярном небе, потому что Земля постоянно обдувается потоком солнечной плазмы. Ведь если бы не было солнечного ветра, не было бы никакого аврорального овала и, возможно, сияний вообще. Солнечный ветер — это постоянно расширяющиеся («испаряющиеся») наружные слои атмосферы Солнца. Поэтому можно сказать: сияниями мы обязаны тому, что живем прямо в Солнце, да еще тому, что планета наша имеет собственное магнитное поле, «распирающее» солнечную плазму.