На тот же конкретный характер указывают существующие у многих примитивных племен различные системы счета для различных предметов, например для предметов плоских и для круглых, для животных и для людей, для времени, для длинных предметов и т. д. Различные предметы требуют и различного счета. Так, например, в языке микир существуют отдельные системы счета для людей, животных, деревьев, домов, плоских и круглых предметов, частей тела. Числительное всегда есть чисто определенного предмета.
Остатки этого мы видим в сохранившихся еще у нас различных способах счета, применяемых к различным предметам. Карандаши, например, до сих пор считаются на дюжины и гроссы и т. д. Замечательны в этом отношении и те вспомогательные слова, которые употребляются многими примитивными народами при счете. Эти вспомогательные слова имеют задачей сделать наглядными и как бы видимыми последовательные стадии арифметической операции. Когда, например, на подобном языке говорят «21 фрукт», это буквально звучит так: сверх 20 фруктов я кладу 1 на самой верхушке; когда говорят «26 фруктов», это значит: сверх двух групп по 10 фруктов я кладу наверху 6.
Здесь, говорит Леви-Брюль, мы видим ту же живописующую арифметику — черту, которую мы видели в общей структуре языка.
Как бы ни казалось парадоксальным это, заключение, говорит он, оно между тем истинно: в данных обществах человек считал в течение долгих веков, еще не имея чисел. Было бы ошибкой представлять, что человеческий ум построил числа для того, чтобы считать, в то время как, наоборот, люди начали считать, прежде чем сумели создать числа.
Связь числовой операции с конкретной ситуацией прекрасно поясняет Вертгеймер. Он показывает, что сами числовые образы, которыми пользуется примитивный человек, ориентированы на реальные возможности. То, что невозможно реально, то невозможно для них и в операциях счета. Там, где не существует никакой живой конкретной связи между вещами, там не существует для них и никакого логического отношения. Для примитивного человека, например, 1 лошадь + 1 лошадь = 2 лошади; 1 человек + 1 человек = 2 человека, но 1 лошадь + 1 человек = 1 всадник.
Рис. 20
Бирки иркутских бурят. На бирках отмечается посредством особых знаков, надрезываемых на дереве, количество скота, хлеба, денег и т. д. Бирки служат примитивной записью, распиской, квитанцией, денежным обязательством, заменяя недостающую систему цифр и письма.
Вертгеймер ставит общий вопрос: как ведут себя эти люди при встающих в их жизни таких мыслительных задачах в тех случаях, когда мы оперируем числами? Оказывается, что подобные задачи перед примитивным человеком встают очень часто. При этом он оперирует на низших ступенях своего развития непосредственными восприятиями количества, а на высших ступенях — нумерическими образами, употребляемыми в качестве знаков или орудий, но носящими еще чисто конкретный характер.
В качестве знаков или вспомогательных орудий на ранней ступени выступают камешки, пальцы, палочки, из которых развиваются впоследствии бирки (рис. 20). Наконец, когда у примитива не хватает пальцев для счета, он считает на пальцах своего товарища, а если нужно, то приглашает и третьего товарища, причем иногда пальцы каждого нового товарища означают новый разряд (десяток).
В счете примитивных народов часто находим мы знаки, приближающиеся к римской системе. Так, например, цуни изобретают при помощи узлов все числа: простой узел обозначает единицу, более сложный — пять, еще более сложный — десять.
Два значит один плюс один. Пять с предшествующим простым узлом означает четыре; пять., с последующим узлом означает шесть. Эта система обозначения низшего количества через вычитание единицы из высшего указывает на арифметическую ориентировку примитивного человека на закругленные и законченные естественные группы (пальцы руки и т. п.).
Замечательный случай рассказывает один исследователь о счете примитивного человека. Этот случай проливает свет на развитие числовых систем. Примитив считает сначала на пальцах одной руки, приговаривая: «Это — один» и т. д.; при последнем пальце он прибавляет: «Одна рука». Затем он считает пальцы другой руки таким же точно образом, затем пальцы ног. Если счет при этом не закончен, то при дальнейшем счете «одна рука» считается как единица высшего разряда. Теперь уже, считая на пальцах рук и ног, он считает пятками, т. е. целые руки.
Эту операцию психологи вызывают чисто экспериментальным путем. Представим себе, что какой-нибудь группе культурных людей мы предложим пересчитать 27 предметов, предупредив их при этом, что они, как некоторые примитивные народы, не умеют считать больше чем до пяти. Как показывают наши опыты, часть группы не решает задачу вовсе; часть решает ее, не выполнивши условия; наконец, третья часть решает ее совершенно правильно и совершенно одинаковым образом.
Они пересчитывают предметы, повторяя все время ряд от единицы до пяти, затем начинают считать пятки и выражают итог следующим образом: пять пятков и два. Исследования показывают, что и наш счет по десятичной системе основан именно на таком приеме. Это всегда как бы счет в две пяти: мы считаем сами предметы и затем считаем свой счет, т. е. группы этих предметов. Так, например, когда я считаю 21, 22, 23… затем 31, 32, 33, то я фактически считаю предметы только при помощи 1, 2, 3, слова же «двадцать» и «тридцать», прибавляемые всякий раз, показывают мне, что мой счет идет в пределах второго и третьего десятков.
Экспериментальные исследования привели к чрезвычайно интересному выводу, показывающему, что наша счетная система считает за нас. То раздвоение внимания, которое должен осуществить примитив, считая раньше единицы предметов на пальцах руки, а потом количество рук на тех же самых пальцах, — это самое за нас проделывает десятичная система. Поэтому, говорят психологи, когда мы считаем, с психологической точки зрения мы не считаем вовсе, а припоминаем. Мы автоматически пользуемся нашей числовой системой, мы воспроизводим в порядке числовой ряд и, достигнув определенного пункта, узнаем готовый результат. То, что мы видим у взрослого культурного человека в скрытой, автоматизированной и уже развитой форме, существует у примитивного человека еще в явной форме и в состоянии развития.
Любопытно отметить, что при помощи таких специфических вспомогательных средств происходит не только простой счет, но и довольно сложные арифметические операции. Вертгеймер сообщает о замечательном способе счисления, который был найден у курдов на русско- персидской границе. Не владея еще абстрактной операцией счета, курды умножают следующим образом. Числа от 6 до 10 изображаются пригибанием одного, двух, трех, пяти пальцев (подразумевается: плюс пять). Умножение от 5 × 5 до 10 × 10 производится так, что согнутые пальцы складываются как десятки, а вытянутые умножаются как единицы.
Например, нужно умножить 7 × 8. На одной руке загнуто два пальца (2 + 5 = 7); на другой — три (3 + 5 = 8). Приложить одну руку к другой, сложить загнутые пальцы (2 + 3 = 5), умножить вытянутые — шесть единиц (2 × 3 = 6). Результат — 56.
Леруа указывает на то, что и у культурных народов встречаются числовые множества или нумерические образы (век, год, неделя, месяц, эскадрон — все это нумерические образы). «Чем, — спрашивает он, — слово фиджи „кого“, означающее „сто кокосовых орехов“, более примитивно, чем слово „век“, означающее „сто лет“?» У нас 10 солдат, идущих отдельно, — это 10 человек, а с капралом в строю — взвод: в этом примере Леруа видит аналогию с тем, что в примитивных языках число «описывает специальные обстоятельства» счета.
Основной вывод этого автора является, на наш взгляд, бесспорным: нельзя сравнивать счисление примитивов со «счислением» животных, т. е. нельзя сводить к непосредственному восприятию количеств всю примитивную арифметику. Самое характерное для этой арифметики заключается в том, что это «эмбриональное счисление, для того чтобы перейти за определенные границы, должно всякий раз прибегать к помощи конкретной мнемотехники» (употребление пальцев, палочек). Соединение натуральной арифметики (непосредственное восприятие количеств) с мнемотехнической составляет самую характерную черту примитивного счисления. Леруа справедливо сравнивает эту арифметику со счетом у неграмотных и с пользованием наглядными числами (диаграммы) у нас.
Дальнейшее развитие «культурной математики» теснейшим образом связано с эволюцией знаков и способов их употребления. Это приложимо не только к низшим, но и к самым высшим ступеням развития научной математики. Ньютон, объясняя сущность алгебраического метода, говорил, что для решения вопросов, относящихся к числам или отвлеченным отношениям величин, требуется только перевести задачу с английского или другого языка, на котором она предложена, на язык алгебраический, способный выражать наши понятия о соотношении величин.