Как и множество других жизненных процессов, быстрое движение было изобретено бактериями. Самый быстрый член микрокосма — крошечное, напоминающее волосок создание, названное спирохетой («скрученный волос») и известное также как «бактерия-штопор», поскольку двигается по спирали подобно штопору. Прицепляясь симбиотически к более крупным клеткам, подвижная спирохета дает этим клеткам огромное преимущество быстрого перемещения — способности избегать опасности и искать пищу. Со временем бактерии-штопоры утеряли свои индивидуальные черты и эволюционировали в хорошо известные «клеточные кнуты» — flagellae, cilia, и т. п., — которые служат средством перемещения для множества различных ядерных клеток, как бы подстегивая их своими волнообразными движениями.
Объединенные преимущества трех типов симбиоза, описанных в предыдущих параграфах, вызвали вспышку эволюционной активности, которая, в свою очередь, породила огромное разнообразие эукариотических клеток. Обладая двумя эффективными способами выработки энергии и радикально возросшей мобильностью, новые симбиотические формы жизни мигрировали в новые окружения, эволюционируя в первые растения и в первых животных, которым в конце концов суждено было покинуть воду и выбраться на сушу.
Как научная гипотеза, концепция симбиогенеза — создания новых форм жизни через слияние различных видов — насчитывает едва тридцать лет. Но как культурный миф эта идея, похоже, стара, как само человечество41. Религиозные эпические творения, легенды, волшебные сказки и другие мифические истории всего мира населены фантастическими созданиями — сфинксами, русалками, гриффонами, кентаврами и другими, — появившимися на свет в результате смешения одного или более видов. Как и клетки-эукариоты, эти создания состоят из хорошо знакомых компонентов, но их комбинации непривычны и поразительны.
Изображения этих гибридов зачастую ужасны, но многие из них, как это ни забавно, считаются приносящими удачу. Например, бог Ганеша, который обладает человеческим телом с головой слона, — один из наиболее почитаемых в Индии божеств; ему поклоняются как символу удачи и помощнику в преодолении препятствий. Похоже, что каким-то образом коллективному человеческому бессознательному с древнейших времен известно, что продолжительный симбиоз в высшей степени благотворен для всякой жизни.
Эволюция растений и животных
Эволюция растений и животных за пределы микрокосма осуществлялась через последовательность симбиозов, в которых бактериальные изобретения предыдущих двух миллиардов лет комбинировались в бесконечных проявлениях творчества, пока не были отобраны жизнеспособные формы. Для этого эволюционного процесса характерна возрастающая специализация — от органелл в первых эукариотах до исключительно специализированных клеток у животных.
Важным аспектом клеточной специализации является изобретение полового размножения около миллиарда лет тому назад. Мы привыкли думать, что пол и размножение тесно связаны между собой, однако, как отмечает Маргулис, сложный танец полового размножения состоит из нескольких отдельных компонентов, которые развивались независимо и только постепенно обрели взаимосвязь и единство42.
Первым компонентом является тип деления клетки, называемый мейозом («уменьшением»), при котором число хромосом в ядре уменьшается ровно наполовину. Так создаются специализированные клетки яйца и спермы. Затем эти клетки трансформируются в процессе оплодотворения, который восстанавливает нормальное число хромосом, и появляется новая клетка — оплодотворенное яйцо. В дальнейшем эта клетка последовательно делится в процессе роста и развития многоклеточного организма.
Слияние генетического материала двух разных клеток широко распространено среди бактерий, где оно происходит в виде непрерывного обмена генами, который не связан с размножением. У ранних растений и животных появилась связь между размножением и слиянием генов, которая впоследствии эволюционировала в сложные процессы и ритуалы оплодотворения. Пол был более поздним усовершенствованием. Первые эмбриональные клетки — сперма и яйцо — были почти идентичными, но со временем они эволюционировали в маленькие, быстрые клетки спермы и большие неподвижные яйцеклетки. Связь между оплодотворением и формированием эмбриона образовалась еще позже, в процессе эволюции животных. В мире растений оплодотворение вылилось в сложные паттерны совместной эволюции цветов, насекомых и птиц.
По мере того как продолжалась специализация клеток в более крупных и сложных формах жизни, возможности, связанные с самовосстановлением и регенерацией, постепенно снижались. Плоские черви, полипы и морские звезды могут почти полностью регенерировать свои тела из маленьких частиц; ящерицы, саламандры, крабы, омары и многие насекомые все еще способны отращивать потерянные органы или конечности; однако для высших животных регенерация ограничена обновлением тканей в процессе заживания ран. Как последствие этой утери восстановительных функций, все крупные организмы подвержены старению и, в конечном счете, смерти. Тем не менее с половым размножением жизнь изобрела новый тип восстановительного процесса, в котором целые организмы опять и опять формируются заново, с каждым поколением возвращаясь к единичной ядерной клетке.
Растения и животные — не единственные многоклеточные создания в живом мире. Как и другие особенности живых организмов, многоклеточность эволюционировала неоднократно, по многим родословным древам жизни, и сегодня все еще существует несколько видов многоклеточных бактерий, а также множество многоклеточных протестов (микроорганизмов с ядерными клетками). Подобно животным и растениям, большинство видов этих многоклеточных организмов формируются последовательным делением клеток, но некоторые из них образуются как объединение клеток от разных, но принадлежащих одному и тому же виду источников.
Замечательный пример таких объединений дает слизистая плесень — макроскопический организм, но по своей конституции — протист. Простая слизистая плесень обладает сложным жизненным циклом, включающим подвижную (как у животных) и неподвижную (как у растений) фазу. В животной фазе она зарождается как массив отдельных клеток, которые обычно можно найти в лесу под гниющими бревнами и влажными листьями, где они питаются за счет других микроорганизмов и вянущей растительности. Часто эти клетки едят так много и делятся столь стремительно, что полностью истощают пищевые ресурсы окружающей среды. Когда это происходит, они объединяются в связную массу из тысяч клеток, похожую на слизня и способную ползать по лесной почве, движениями напоминая амебу. Найдя новый источник пищи, плесень вступает в свою растительную фазу, развивая ножку с плодоносной мякотью, очень похожую на гриб. Наконец, плодовая коробочка взрывается, выстреливая наружу тысячи сухих спор, из которых появляются новые отдельные клетки; они теперь будут передвигаться независимо в поисках пищи, начиная новый цикл жизни.
Среди разнообразных многоклеточных организаций, которые развились из тесно связанных сообществ микроорганизмов, три — растения, грибы и животные — были столь удачны в отношении размножения, изменчивости и распространения по всей Земле, что биологи классифицировали их как царства — самые широкие категории живых организмов. Всего таких царств пять — бактерии (микроорганизмы без клеточного ядра), протисты (микроорганизмы с ядерными клетками), растения, грибы и животные43. Каждое из царств иерархически делится на подкатегории, или таксоны, начиная с типа и кончая родом и видом.
Теория симбиогенеза позволила Линн Маргулис и ее коллегам построить классификацию живых организмов на ясных эволюционных взаимоотношениях. На рис. 10-1 в упрощенной форме показано, как протисты, растения, грибы и животные эволюционировали из бактерий через ряд последовательных симбиозов, подробно описанных ниже.
Следуя за эволюцией растений и животных, мы приходим к макрокосму и должны переключить наш временной диапазон с миллиардов лет на миллионы. Самые древние животные развились около 700 млн. лет назад, а первые растения возникли около 200 млн. лет спустя. И те, и другие сначала эволюционировали в воде и вышли на сушу 400–450 млн. лет назад, причем растения опередили животных на несколько миллионов лет. И растения, и животные развили огромные многоклеточные организмы, но если межклеточные связи в растениях минимальны, то клетки животных исключительно специализированы и тесно взаимосвязаны посредством множества сложных звеньев связи. Уровень взаимной координации и управления значительно возрос, когда стали развиваться первые нервные системы; примерно 620 млн. лет назад у животных появились зачатки мозга.