MyBooks.club
Все категории

Евгений Айсберг - Радио и телевидение?.. Это очень просто!

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Евгений Айсберг - Радио и телевидение?.. Это очень просто!. Жанр: Радиотехника издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Радио и телевидение?.. Это очень просто!
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
360
Читать онлайн
Евгений Айсберг - Радио и телевидение?.. Это очень просто!

Евгений Айсберг - Радио и телевидение?.. Это очень просто! краткое содержание

Евгений Айсберг - Радио и телевидение?.. Это очень просто! - описание и краткое содержание, автор Евгений Айсберг, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
В книге рассказывается о том, как устроены и работают современные радиоприемник и телевизор. Рассказ ведется в форме непринужденных бесед между опытным и начинающим радиолюбителями.Книга рассчитана на широкий круг читателей.

Радио и телевидение?.. Это очень просто! читать онлайн бесплатно

Радио и телевидение?.. Это очень просто! - читать книгу онлайн бесплатно, автор Евгений Айсберг

Рис. 58. Сориентировав две рамочные антенны на передатчик, определяют его местонахождение (а), а направив рамочную антенну на два передатчика, определяют местонахождение приемника (б).


Н. — Скажи, пожалуйста, а нельзя ли поступить наоборот: с корабля или самолета определить направления на два стационарных передатчика, местонахождение которых точно известно?

Л. — Такой метод радиопеленгации действительно применяется. Однако в наши дни радиопеленгаторы постепенно исчезают: их очень удачно заменяют радиолокаторы, о которых я тебе расскажу позднее.



Рамочные антенны с ферромагнитными сердечниками

Н. — Но вернемся к вопросу, который я задал тебе в начале нашей беседы. Должен ли я предположить, что внутри футляра моего портативного приемника имеется рамочная антенна?

Л. — Это не вызывает сомнения, но используемая в твоем приемнике рамочная антенна представляет собой катушку на ферритовом сердечнике.

Н. — Что ты так называешь?

Л. — Это магнитный сердечник с высокой проницаемостью, сделанный в виде стержня и состоящий из ферромагнитных окислов, крупинки которых изолированы друг от друга.

Н. — Зачем?

Л. — Чтобы до минимума уменьшить токи Фуко, т. е. токи, которые переменное магнитное поле катушки наводит в любом помещенном в него проводнике. Благодаря изоляции магнитных зерен активное сопротивление магнитного сердечника так велико, что его практически можно рассматривать как диэлектрик. В результате токи Фуко равны нулю и наша катушка, служащая внутренней антенной, не растрачивает энергию понапрасну. Такие антенны носят название ферритовых или магнитных.

Н. — Но для какой цели служит этот сердечник?

Л. — Принимая во внимание очень малые размеры ферритовой антенны, установленной в футляре радиоприемника, необходимо использовать сердечник, позволяющий повысить индуктивность и, что самое главное, дающий возможность более эффективно принимать радиоволны. Благодаря своей высокой магнитной проницаемости эти сердечники, облегчая прохождение магнитных силовых линий, концентрируют волны в ферритовых антеннах.

Н. — А как такие антенны соединяются с входом приемной схемы?

Л. — Обычно ферритовая антенна является индуктивностью входного колебательного контура и поэтому соединяется с обкладками настроечного конденсатора переменной емкости (рис. 59).



Рис. 59. Колебательный контур, содержащий рамочную антенну с ферритовым сердечником.


Н. — Понятно. И последний вопрос относительно антенны. Никакого труда не вызывает ориентация в нужном направлении портативного радиоприемника. Но ведь нельзя же крутить громоздкий и тяжелый приемник, стоящий в углу комнаты. Как поступают в этом случае?

Л. — В этом случае вращают только ферритовую антенну, установленную внутри футляра, с помощью специальной ручки, находящейся на передней панели радиоприемника.



Л. — До сих пор мы говорили лишь о пассивных компонентах — конденсаторах, катушках индуктивности и резисторах. Теперь подошло время заняться активными компонентами.

Н. — А как в них протекает ток?

Л. — Через вакуум или полупроводник.

Н. — У меня такое впечатление, Любознайкин, что ты надо мною смеешься. Как можно себе представить прохождение тока через вакуум, если он еще в большей степени, чем сухой воздух, представляет собой идеальный диэлектрик?

Л. — И тем не менее электроны свободно проходят через вакуум при условии, что их туда выбрасывают. Для этой цели проводник нужно нагреть до высокой температуры. Знаешь ли ты, что происходит в нагретом веществе?

Н. — Конечно. Молекулы вещества приходят в беспорядочные колебательные движения, скорость которых по мере повышения температуры возрастает.

Л. — Совершенно верно. И наступает такой момент, когда молекулы настолько раскачиваются, что электроны, находящиеся на внешних орбитах и потому слабее притягиваемые ядрами, отрываются и, покидая вещество, вылетают наружу.

Н. — Мне это напоминает наполненный фруктами поднос, который трясут до такой степени, что некоторые фрукты падают.



Л. — Аналогия справедлива. Но ты не спросил меня, как нагревают вещество, чтобы вызвать эмиссию электронов. Это, конечно, можно сделать с помощью пламени горящего угля, бензина или газа. Но если я скажу тебе, что в электронике предпочитают пользоваться электрической энергией, то ты мне поверишь на слово.

На практике пользуются небольшой спиралью, которую протекающий ток накаляет наподобие нити осветительной лампы. Электрическая энергия при прохождении по спирали превращается в тепло. А так как нить накала очень тонкая, ее сопротивление высокое, а масса ничтожная, выделяющиеся на ней калории доводят ее до высокой температуры.



Н. — Таким образом, как я понял, и происходит эмиссия электронов с нити накала в окружающее пространство?

Л. — Да, по крайней мере в лампах с непосредственным накалом, в которых накаленная нить накала эмиттирует электроны (рис. 60).



Рис. 60. Эмиссия электронов катодом с прямым накалом.


Но чаще пользуются лампами с косвенным накалом, в которых нить накала закрыта тонким слоем диэлектрика, на этот диэлектрик надета никелевая трубочка, покрытая эмиссионным слоем, состоящим из различных окислов, способных испускать электроны при не очень высокой температуре, чаще всего здесь используют окислы бария и стронция (рис. 61).



Рис. 61. Эмиссия электронов катодом с косвенным накалом.


Н. — А какой смысл так усложнять устройство, испускающее электроны?

Л. — Благодаря косвенному накалу нить накала электрически изолирована от слоя, испускающего электроны. Это, в частности, позволяет нагревать ее как постоянным, так и переменным током. Ток накала в данном случае играет лишь второстепенную роль.

Создание ламп с косвенным накалом позволило наладить производство приемников с питанием от осветительной сети. А раньше в приемниках на лампах с непосредственным накалом для получения стабильной эмиссии электронов нити накала нагревали с помощью энергии батарей напряжением 4 В.

В наши дни лампы с косвенным накалом питают переменным током напряжением 6,3 В, получаемым от сети с помощью понижающего трансформатора.



Выпрямление тока и детектирование

Н. — Я хорошо понял, как создают эмиссию электронов, но не вижу, для чего могут понадобиться рассеянные в пространстве электроны. Я даже спрашиваю себя, не будут ли они страдать, разбивая себе носы при столкновении с молекулами воздуха, которые они встретят на своем пути.

Л. — Никакой опасности нет, потому что эмиттер (излучатель электронов) помещается в вакууме, т. е. в стеклянной колбе, из которой откачали воздух, создав в ней почти абсолютную пустоту. Но мы не позволим электронам прохлаждаться в этой пустоте. Напротив нашего электрода, термического излучателя электронов, мы установим пластину из проводника и подведем к ней положительный относительно излучающего электрода потенциал (рис. 62). Что же тогда произойдет?



Рис. 62. В диоде с косвенным накалом на анод подается положительный относительно катода потенциал, что позволяет ему притягивать испускаемые катодом электроны.


Н. — Будучи положительной, пластина притянет к себе вылетающие электроны. И если источник постоянного напряжения включен между испускающим электроны электродом и притягивающей их пластиной, то потечет постоянный ток по цепи, одним из участков которой будет вакуум. Это, однако, потрясающе!

Л. — Так устроен электровакуумный диод. Он имеет два электрода: тот, который излучает электроны и обладает отрицательным потенциалом, называется катодом, а другой, обладающий положительным потенциалом, называется анодом.

В выпускаемых в настоящее время лампах (рис. 63) катод чаще всего располагают на вертикальной оси колбы, а анод, имеющий форму цилиндра, окружает катод со всех сторон.



Рис. 63. Устройство диода.


Евгений Айсберг читать все книги автора по порядку

Евгений Айсберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Радио и телевидение?.. Это очень просто! отзывы

Отзывы читателей о книге Радио и телевидение?.. Это очень просто!, автор: Евгений Айсберг. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.