Если не к недостаткам, то уж наверняка к трудностям нужно отнести необходимость строгой симметрии плеч двухтактного каскада. Симметрия нужна для того, чтобы выходной сигнал был «сшит» из одинаковых половинок, чтобы пульсации, постоянные составляющие и четные гармоники токов ламп с равной силой выходили на «поле боя» (в первичную обмотку выходного трансформатора) и полностью уничтожали друг друга. Для получения симметрии нужно, чтобы в двухтактном каскаде работали совершенно одинаковые лампы, причем в одном и том же режиме, и чтобы в обоих плечах применялись одинаковые детали. Главная трудность здесь состоит в изготовлении симметричной обмотки и выходного трансформатора и в подборке ламп — даже одинаковые по названию лампы могут иметь заметный разброс параметров.
Что касается трансформатора, то с ним связана еще одна трудность: его индуктивность рассеяния Lpac должна быть очень небольшой. Для уменьшения Lpac в ряде случаев приходится принимать специальные меры (стр. 203).
Значительные неудобства возникают, если двухтактный выходной каскад работает в классе В. В этом случае ток покоя ламп равен нулю (рис. 54), а постоянная составляющая анодного тока Iа0 меняется в зависимости от уровня входного сигнала. Чем больше Uвх, тем больше импульсы тока в анодной цепи, тем, следовательно, больше и постоянная составляющая этих импульсов Iа0. С этим связаны сразу две неприятности. Во-первых, изменение Iа0 означает, что меняется ток, потребляемый от выпрямителя, и падение напряжения Uф на дросселе или сопротивлении фильтра (рис. 30, 18). В итоге меняется и постоянное напряжение на выходе выпрямителя, которое подается и на другие лампы. Вывод — анодные цепи ламп, работающих в классе В, и все остальные лампы усилителя не стоит питать через общий фильтр выпрямителя.
рис. 30, 18
Во-вторых, из-за отсутствия тока покоя и непостоянства постоянной составляющей Iа0 в выходном каскаде нельзя применить удобную схему автоматического смещения — нельзя включить сопротивление в катодную цепь лампы. Смещение приходится подавать от отдельного источника, который обычно «выкраивают» в схеме питания (рис. 45, блок 5 В).
Оба последних недостатка в какой-то мере относятся к классу АВ. В этом случае, правда, ток покоя не равен нулю, однако постоянная составляющая Iа0 все же меняется, причем тем сильнее, чем меньше угол отсечки. И хотя в большинстве случаев для усилителей, работающих в классе АВ, все же применяют автоматическое смещение, его, по возможности, следует заменить независимым смещением, то есть напряжением, которое не зависело бы от анодного тока выходных ламп.
Достоинства двухтактных схем привлекают конструкторов намного сильнее, чем отпугивают их недостатки. Вот почему, когда мощности одной лампы не хватает и речь идет об использовании в выходном каскаде двух ламп (кстати, для увеличения выходной мощности лампы можно включать параллельно), то этот каскад всегда собирают по двухтактной схеме. Распространенные выходные лампы развивают мощность до 4–5 вт, и поэтому двухтактный выходной каскад вы встретите во всех промышленных и любительских усилителях низкой частоты, в том числе, конечно, в усилителях радиоузлов, с выходной мощностью более 4–6 вт. В ряде случаев и выходные каскады очень небольшой мощности собирают по двухтактной схеме. Она незаменима, когда особо важно снизить потребляемую мощность (переносная аппаратура с питанием от батарей), а также в усилителях, к которым предъявляются очень жесткие требования в отношении нелинейных искажений.
Поскольку мы высказались за применение двухтактных схем, то нужно выяснить, как и в какой степени можно устранить их недостатки, какими путями можно преодолеть трудности, стоящие на пути применения двухтактных усилителей. Начнем с самого необходимого — со схем, которые позволяют подать на сетки ламп противофазные напряжения.
"Кру-гом!“
На уроках физкультуры вы наверняка видели, как выполняется эта команда, а может быть, даже выполняли ее сами. «Кру-гом!» — командует преподаватель. И тот, к кому это относится, четко поворачивается на 180°. Что-то похожее придется проделать с усиливаемым сигналом. Нужно и его научить поворачиваться на 180°, то есть сдвигать фазу на полпериода. При этом получится два сигнала: один с еще не сдвинутой фазой, а другой — со сдвинутой. Именно такие сигналы и нужны для подачи их на управляющие сетки ламп двухтактного усилителя. Электрические цепи или электронные схемы, которые заставляют переменное напряжение выполнять команду «кру-гом!» и выдают на выходе два одинаковых по величине и противофазных напряжения, называются фазоинверторами (рис. 59).
Рис. 59. На сетки ламп двухтактного выходного каскада сигналы необходимо подавать в противофазе. Для этой цели фазоинвертор каким-либо способом делит напряжение сигнала на две равные части и поворачивает на 180° фазу одной из них.
Один из простых фазоинверторов — это предоконечный каскад, в анодную цепь которого включен междуламповый трансформатор Трм. л (рис. 58, 3, а).
Рис. 58, 3
Междуламповым он называется потому, что через него сигнал передается из анодной цепи предоконечной лампы на сетки выходных ламп. Вторичную обмотку трансформатора Трм. л можно разделить на две части, и тогда мы получим два выходных напряжения. Сдвинуть фазу одного из этих напряжений на 180° не составляет труда: фаза напряжения на выходе любого трансформатора зависит от того, какой из выводов вторичной обмотки заземлен (рис. 39, 1). Вторичную обмотку междулампового трансформатора выполняют как одно целое и делают вывод от средней точки. Заземлив этот средний вывод, мы получим на краях вторичной обмотки два одинаковых по величине и противоположных по фазе напряжения. Чтобы убедиться в этом, попробуйте провести рассуждения с помощью «плюсов» и «минусов» (рис. 58, 3, б, в).
Несмотря на простоту, фазоинвертор с трансформатором применяют довольно редко: сам трансформатор считается сложной деталью, и там, где это возможно, стараются обходиться без него. Кроме того, лишний трансформатор — это лишний источник частотных и нелинейных искажений.
Другой простой фазоинвертор — это усилительный каскад с двумя нагрузками: анодной Ra и катодной Rк (рис. 60, 1, а). Известно, что при увеличении анодного тока напряжение на аноде Uа уменьшается, а напряжение Uк на катодном сопротивлении Rк увеличивается (рис. 60, 1, б).
рис. 60, 1
Это значит, что напряжения Uа и Uк будут изменяться в противофазе и поэтому противофазными будут переменные составляющие этих напряжений U'вх2 и Uвх2. Их-то мы и подаем на сетки ламп двухтактного выходного каскада. Для того чтобы оба сигнала не отличались по величине, нужно сделать Rа и Rк одинаковыми. Обычно каждое из этих сопротивлений составляет несколько десятков килоом. За счет такого большого Rк каскад охвачен очень глубокой отрицательной обратной связью, сильно снижающей усиление. Обратите внимание на то, что сопротивление утечки Rc1 подключено не к шасси, а к сопротивлению R*к. В противном случае на Л1 подавалось бы не только постоянное смещение, появляющееся на R*к, но весьма большая (обычно десятки вольт) постоянная составляющая напряжения Uк1.
Существует и другая схема (рис. 60, 2, а, б), где постоянную составляющую Uко все же подают на сетку. Но одновременно с помощью делителя на сетку подают положительное напряжение Uc0. В этом случае смещение будет равно разнице между постоянным положительным и отрицательным напряжением. При налаживании такой схемы нельзя допустить, чтобы лампа даже на какое-то мгновение осталась без отрицательного смещения — «плюс» на сетке может вывести ее из строя.
рис. 60, 2
Напряжение сигнала на сетке лампы и переменное напряжение на ее аноде сдвинуты по фазе на 180° (рис. 30, 24), и это используется в целом ряде фазоинверсных схем. Обычно такие схемы выполняют на двух триодах, один из которых приносится в жертву — от этого триода не требуют усиления, он должен только сдвигать фазу.