MyBooks.club
Все категории

Генрих Кардашев - Радиоэлектроника-с компьютером и паяльником

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Генрих Кардашев - Радиоэлектроника-с компьютером и паяльником. Жанр: Радиотехника издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Радиоэлектроника-с компьютером и паяльником
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
257
Читать онлайн
Генрих Кардашев - Радиоэлектроника-с компьютером и паяльником

Генрих Кардашев - Радиоэлектроника-с компьютером и паяльником краткое содержание

Генрих Кардашев - Радиоэлектроника-с компьютером и паяльником - описание и краткое содержание, автор Генрих Кардашев, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга является практическим введением в изучение начал радиоэлектроники с помощью компьютера и самостоятельного технического творчества. В популярной форме рассказывается о радиоэлектронике, поясняется смысл используемых понятий и явлений, приводятся занимательные эпизоды из истории изобретений и открытий. Основу практической части составляют описания простейших и в тоже время интересных и полезных самоделок из электронных наборов Мастер КИТ. Даются подробные советы по их сборке, наладке и применению в быту. Параллельно принципы действия рассматриваемых устройств раскрываются путем моделирования их схем на компьютере в простой программе игрового типа — Electronics Workbench.Для широкого круга читателей, которые хотели бы подружиться с радиоэлектроникой, сев за компьютер и взяв в руки паяльник.

Радиоэлектроника-с компьютером и паяльником читать онлайн бесплатно

Радиоэлектроника-с компьютером и паяльником - читать книгу онлайн бесплатно, автор Генрих Кардашев

В жидкости, благодаря тепловому движению молекул, их коллективы случайным образом занимают изменяющиеся разнообразные промежуточные состояния. По образному выражению акад. Я. И. Френкеля, молекулы жидкости ведут себя подобно кочевникам: оседлый образ жизни в узлах временной местной кристаллической решетки (где они совершают колебательные движения) сопровождается их периодическими перескоками в другие положения.

Время, за которые молекулы возвращаются к равновесию, носит название времени релаксации. Оценка этого времени для полярных диэлектриков была дана голландским физиком П. Дебаем.

Согласно его теории применительно к молекулам воды, находящейся в жидкой фазе, их ориентационная поляризация и деполяризация аналогичны вращению твердой сферы в вязкой жидкости, приводящему к потерям. В зависимости от соотношения между частотой внешнего поля и величиной, обратной периоду релаксации, величина этих потерь может быть выражена через фактор потерь (tg δ) экспериментально и теоретически.

Наиболее просто воспользоваться для полуколичественных оценок интерпретацией этой зависимости с помощью приближения RC-цепей.

На рис. 135, а показана простейшая цепь (по Хиппелю), моделирующая релаксационные потери в воде в зависимости от частоты.

Поведение молекул воды в электромагнитном поле здесь представлено конденсатором С1, учитывающим собственно ориентационную поляризацию вещества, резистором R1 — потери при этом, а также резистором R2, учитывающим потери независимо от частоты. Источник Е1 дает возможность вместе с Боде плоттером исследовать АЧХ цепи.

Элемент, через который исследуемая цепь подключена к зажиму плоттера, является зависимым источником напряжения Е2, которое пропорционально току в измерительном резисторе (принятом за 1 мОм). То есть, попросту, это датчик тока с коэффициентом деления на 1000.





Рис. 135 Моделирование поглощения электромагнитной энергии водой в СВЧ-диапазоне:

а — модель в EWB; б — АЧХ тока в модели; в — график частотной зависимости фактора потерь


АЧХ тока в этой цепи показана на рис. 135, б, причем положение визирной линии на экране соответствует частоте примерно 2,4 ГГц. Частотная зависимость tgδ для этой же модели, в двойном логарифмическом масштабе, полученная вычислением в программе Mathcad показана на рис. 135, в.

В более точных (и, соответственно, сложных) моделях и эксперименте наблюдается максимум tgδ в области частот >1010 ГГц, но и при частоте 2,45 ГГц значение весьма велико. Это и привело к тому, что на ней работает сейчас большинство СВЧ-печей.

Выбор этих частот связан также с тем, что в отличие от электромагнитных волн инфракрасного диапазона (λ ~= 1·10-6 м и f ~= 3·1014 Гц), также невидимых человеческим глазом, и также активно поглощаемых водой и многими другими веществами (за счет колебаний отдельных атомов в сложных молекулах относительно друг друга), волны СВЧ-диапазона проникают значительно дальне в глубь тел, обеспечивая быстрый объемный, а не поверхностный, нагрев. Поэтому, если требуется не только сварить, но и поджарить, образуя корочку, СВЧ-нагрев дополняют инфракрасным (гриль).

Кроме выше перечисленных причин, существует еще и жесткий регламент на использование той или иной части спектра электромагнитных волн, и определенная коллизия заключается в том, что «гигагерцевые» частоты были отведены для спутниковой радиосвязи. В то же время, помимо, СВЧ-нагрева, на их использование уже все больше начинают претендовать и компьютеры.


Модель бытовой СВЧ-печи

В простейшей бытовой СВЧ-печи в качестве генератора используется магнетрон (см. рис. 10). Питание магнетрона осуществляется от высоковольтного (4 кВ) выпрямителя, построенного по схеме удвоения напряжения. Упрощенная схема-модель силовой части СВЧ-печи показана на рис. 136, а.

Эта модель является условной во многих отношениях, так как в программе EWB отсутствует такой схемный компонент, как магнетрон и вместо него использованы следующие компоненты: М — Triode Vacuum Tube (электровакуумный триод), работающий в режиме диода, с заземленным анодом, на который подается положительное напряжение выпрямителя относительно катода (катод в магнетронах прямой и в печах имеется отдельная цепь накала); генератор переменного напряжения Е2, модельная частота которого выбрана равной 2,45 кГц, т. е. с коэффициентом масштабирования по частоте 10-6 для удобства наблюдения процессов во времени; перемножитель сигналов X и Y. Высоковольтный трансформатор Т1 является повышающим и имеет коэффициент трансформации 0,075. В печах этот трансформатор работает в режиме, близком к магнитному насыщению, выполняя еще и функции феррорезонансного стабилизатора напряжения. Конденсатор С1, обеспечивающий удвоение напряжения в реальных устройствах, также высоковольтный на рабочее напряжение 2,1…2,5 кВ. В печах этот конденсатор обычно шунтируют резистором 1…10 МОм для разрядки после выключения, а также специальным защитным диодом предохранителем (Fuse Diode) — эти компоненты в модель не введены. Диод VD1 в модели идеальный, а в реальных устройствах высоковольтный диод или выпрямительный столб, с обратными напряжениями 12…15 кВ. Модельный резистор R1 носит подсобный характер и отчасти моделирует нагрузку.

В результате моделирования на экране осциллоскопа можно наблюдать следующую картину (рис. 136, б). Луч А (верхний на рис. 136, б) регистрирует отрицательные полуволны напряжения, а луч В — пачки высокочастотных радиоимпульсов. Примерно так же (только с частотой 2,45 ГГц) выглядит изменение напряженности электрического поля на выводе магнетрона.




Рис. 136. Модель СВЧ-печи в EWB:

а — схема; б — осциллограммы сигналов


Электромагнитные волны, излучаемые антенным выводом магнетрона (см. рис. 10, а), через отрезок согласующего прямоугольного волновода направляются в камеру-резонатор. При этом выходное отверстие закрывают тонкой защитной пластинкой из радиопрозрачного материала (фторопласт и т. п.).

В камере устанавливается сложная пространственная структура электромагнитных волн, сильно зависящая от находящегося в ней материала. Основная трудность в нагреве с помощью микроволн внутри замкнутого в электромагнитном отношении объема заключается в создании и поддержании однородности нагрева внутри пространственно неоднородного по своим свойствам материала. Больше того, эти неоднородности сильно изменяются во времени. Поэтому в реальных печах вращают материал относительно поля или вращают поле относительно материла, а также, помимо основного ввода волн, выполняют специальные дополнительные апертуры (действующие отверстия) наподобие фазоинверторов в акустических системах и т. д.

Эти вопросы работы и согласования генератора со столь сложной нагрузкой, находящейся практически почти в «ближнем поле», как и проблемы физики нагрева, с которыми они взаимосвязаны, не имеют пока однозначного решения.

Другой важнейшей и в то же время деликатной проблемой СВЧ-нагрева в быту является вопрос экранировки от утечек поля в окружающее пространство. Вопрос этот весьма серьезный: достаточно лишь представить себе, что внутри печи локализована электромагнитная мощность, сравнимая с мощностью отдельных передатчиков, размещенных на Останкинской башне.

Существует несколько возможных каналов для утечек, но мы остановимся на наиболее опасном источнике: щели между дверцей печи и камерой. Согласно электродинамике Максвелла, излучение из щели в проводящем экране будет происходить в том случае, если эта щель прерывает поверхностные токи, наведенные в нем электромагнитными волнами.

В старых конструкциях пытались здесь организовать хороший непрерывный контакт, и поскольку после некоторой эксплуатации он в отдельных местах неминуемо нарушался, то на прилегающих поверхностях появлялись следы электрической эрозии. Значит эти области «искрили», но в отличие от искрящих контактов в реле или на коллекторах электрических машин, излучение от разрядов, а также от токов смещения в неплотном зазоре СВЧ-печи лежит не в низкочастотной области, где их влияние на людей мало, а там, где оно может быть и велико. Поэтому при дальнейшем конструировании печей пошли по пути уменьшения этих токов, создаваемых по обе стороны щели. Для этого по всему периметру металлической дверцы на расстоянии четверти длины волны (λ/4) от выходного сечения внутренней части камеры выполняют профилированный прямоугольный «карман», приходящийся на удлинненную торцевую поверхность камеры печи, к которой примыкает дверца; глубина кармана также составляет λ/4. В результате по всему периметру образуется своеобразная резонансная ловушка (λ/2) для электромагнитных волн, короткозамкнутая на своих концевых (поперечных) поверхностях, где поверхностные токи достигают максимума, тогда как в области щели они оказываются близкими к нулю.


Генрих Кардашев читать все книги автора по порядку

Генрих Кардашев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Радиоэлектроника-с компьютером и паяльником отзывы

Отзывы читателей о книге Радиоэлектроника-с компьютером и паяльником, автор: Генрих Кардашев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.