MyBooks.club
Все категории

Михаил Николаенко - Самоучитель по радиоэлектронике

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Михаил Николаенко - Самоучитель по радиоэлектронике. Жанр: Радиотехника издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Самоучитель по радиоэлектронике
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
201
Читать онлайн
Михаил Николаенко - Самоучитель по радиоэлектронике

Михаил Николаенко - Самоучитель по радиоэлектронике краткое содержание

Михаил Николаенко - Самоучитель по радиоэлектронике - описание и краткое содержание, автор Михаил Николаенко, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Вы держите в руках книгу, которая представляет собой сборник практических рекомендаций и советов по проектированию, изготовлению и наладке аналоговых и цифровых электронных устройств различного назначения. Каждый читатель в соответствии со своим уровнем подготовки сможет почерпнуть в данной книге рекомендации по выбору и применению стандартных и специализированных радиоэлектронных компонентов, разработке и использованию электрических схем, советы по изготовлению и монтажу печатных плат. В книге приведены основные принципы конструирования и приемы сборки радиоэлектронных устройств, порядок тестирования компонентов, проведения измерений в электрических схемах и ремонта устройств.Книга рассчитана на читателя с техническим складом ума, которому уже приходилось собирать электронные устройства, и адресована широкому кругу радиолюбителей, как профессионалам, так и начинающим.

Самоучитель по радиоэлектронике читать онлайн бесплатно

Самоучитель по радиоэлектронике - читать книгу онлайн бесплатно, автор Михаил Николаенко

2.1.7. Удвоитель напряжения

Удвоитель напряжения (в общем случае умножитель напряжения) представляет собой определенное соединение диодов и конденсаторов. Этот принцип построения давно используется для получения очень высоких напряжений, например, в телевизорах или в устройствах для ионизации газа. Небольшая схема, представленная на рис. 2.6, применяется для получения постоянного напряжения, приблизительно вдвое превышающего напряжение на входе.



Рис. 2.6. Удвоитель напряжения


Для работы схемы необходим сигнал прямоугольной формы низкой частоты. В данной схеме используются только положительные импульсы, что отличает ее от классических удвоителей, работающих от сети или от синусоидального напряжения, снимаемого с вторичной обмотки трансформатора.


2.1.8. Каскады с открытым коллектором

В литературе по электронике и технической документации часто встречается термин «открытый коллектор». Он связан с транзисторными каскадами и интегральными схемами. Примерами могут служить логические ИС семейства ТТЛ или другие схемы, предназначенные для обеспечения питания, стабилизации или усиления. В такой конфигурации транзистор n-p-n или p-n-р типа включен по схеме с общим эмиттером, а его коллектор остается свободным для использования разработчиком устройства (рис. 2.7а,б).

Выше уже описывалось одно из преимуществ этой концепции — возможность параллельного соединения нескольких идентичных схем. Выходы элементов с открытым коллектором соединяются, на этом основано построение логических устройств с тремя состояниями.



Рис. 2.7. Схемы с открытым коллектором


Другой классический пример применения таких элементов — это согласование по уровню двух схем, работающих при разных напряжениях питания. В любом случае на выходе каскада с открытым коллектором должен быть включен резистор, соединенный с источником напряжения +UCC или — UCC (для транзисторов типа n-p-n или p-n-р соответственно). Он фактически выполняет функцию нагрузочного резистора в цепи коллектора. При параллельном включении двух или более каскадов достаточно будет одного общего резистора (рис. 2.7в). Его номинал определяется в зависимости от токов, которые должны протекать по коллекторным цепям транзисторов.


2.1.9. Двухтактный каскад

Двухтактный каскад — это каскад на двух транзисторах, обычно используемый на выходе быстродействующих цифровых устройств. Кроме того, он входит в состав многих управляющих схем на МОП транзисторах. Двухтактный каскад включают также на выходе большинства генераторов синусоидального напряжения, работающих на низкоомную нагрузку (обычно 50 Ом). Его применение обеспечивает улучшение согласования генератора с нагрузкой. Базовая схема проста (рис. 2.8а): у двух комплементарных транзисторов, включенных по схеме с общим коллектором, соединены эмиттеры и базы. Транзистор n-p-n типа присоединен к положительному полюсу источника питания, а транзистор p-n-р типа — к отрицательному. Транзисторы открываются поочередно, и напряжение на выходе практически повторяет по форме входной сигнал.

Двухтактный каскад обладает одним недостатком: он не может полностью воспроизвести сигнал, который в отрицательный полупериод опускается до нуля. В таком случае перепад напряжения на выходе оказывается меньше, чем на входе, из-за конечного остаточного напряжения на открытом транзисторе. Этот недостаток не играет никакой роли, когда каскад используется для управления схемой на МОП транзисторах, но важен для выходных каскадов. С целью устранения описанной проблемы необходимо обеспечить симметричное питание двухтактного каскада, то есть применить дополнительный источник отрицательного напряжения (рис. 2.8б).



Рис. 2.8. Двухтактный каскад


2.1.10. Компаратор на транзисторе

Для сравнения двух напряжений не обязательно обращаться к операционному усилителю. С подобной задачей вполне может справиться простая и дешевая схема компаратора на транзисторе, которая представлена на рис. 2.9.



Рис. 2.9. Компаратор на транзисторе


Транзистор p-n-р типа сравнивает опорное напряжение на эмиттере с частью контролируемого напряжения, поданной на базу через резистивный делитель R1R2. Когда напряжение на базе падает ниже опорного, транзистор открывается и выход компаратора (коллектор транзистора) переходит в состояние с высоким потенциалом. Такая схема может использоваться, например, для контроля напряжения батареи питания.


2.1.11. Гистерезис в электронике

Термин «гистерезис» происходит от греческого слова «запаздывание» и означает появление задержки в развитии одного физического явления по отношению к другому. Гистерезис играет большую роль в технике и, в частности, в электронике. Он проявляется каждый раз, когда выполняется операция сравнения двух величин с некоторой точностью.

Суть данного явления можно пояснить на примере работы термостата независимо от наличия или отсутствия электронного регулятора. Рассмотрим термостат, настроенный на поддержание температуры 20 °C с помощью электрического нагревателя. Если бы управляющая нагревателем биметаллическая пластина, деформирующаяся при изменении температуры, не обладала гистерезисом, нагреватель включался бы и выключался очень часто, что приведет к быстрому износу контактов. В действительности регулятор включается при 19 °C, а выключается примерно при 21 °C. При этом механическая инерционность биметаллической пластины и тепловая инерционность нагревателя порождают явление гистерезиса, переключение режимов происходит с небольшой частотой, а температура в термостате колеблется в некотором интервале вблизи заданного значения (рис. 2.10а).



Рис. 2.10. Схема реализации гистерезиса


В электронике все процессы развиваются гораздо быстрее, и нередко приходится искусственно создавать задержку для снижения частоты переключения. В качестве примера на рис. 2.10б приведена схема компаратора на базе операционного усилителя.

Устройство сравнивает регулируемое напряжение Uвх с опорным Uoп, которое задается с помощью батарейки. Результат сравнения выводится на светодиодный индикатор. Чтобы усилить проявление гистерезиса и снизить частоту мигания индикатора, используют резистор, через который часть выходного сигнала передается на вход операционного усилителя. При этом снижается коэффициент усиления каскада и задерживается включение и выключение индикатора.

2.2. Операционные усилители

2.2.1. Присоединение неиспользуемых входов

Иногда один из операционных усилителей (ОУ) микросхемы, в корпусе которой размещаются два или четыре ОУ, не применяется. Подчас это делается преднамеренно, как, например, при использовании микросхемы LM324 ((счетверенный ОУ), которая дешевле, чем сдвоенный аналог LM358. В этом случае возникают проблемы паразитных колебаний и избыточного потребления тока. Для их разрешения неиспользуемые входы следует соединить по схеме повторителя напряжения, то есть вход + (плюс) с общей точкой, а вход (минус) с выходом (рис 2.11).



Рис. 2.11. Присоединение неиспользуемых входов ОУ


2.2.2. Уровень выходного сигнала

Операционный усилитель может с одинаковым успехом использоваться как в аналоговых приложениях (в усилителях и генераторах), так и в цифровых. В его характеристиках среди прочих указывают максимальный уровень выходного сигнала по отношению к напряжению питания. Известная микросхема LM324, например, имеет типичный уровень сигнала 1,5 В. Таким образом, при питании 5 В напряжение на ее выходе никогда не превысит 3,5 В. Это может мешать запуску логической схемы, порог переключения которой не адаптирован к такому уровню, или обеспечению питания нагрузки, требующей более высокого напряжения. В этом случае включение реле на 5 В становится ненадежным. Светодиод никогда полностью не погаснет, а будет гореть с меньшей интенсивностью. В подобных случаях на выходе операционного усилителя рекомендуется поставить буферный каскад на транзисторе.


2.2.3. Объединение выходов операционных усилителей

Иногда при использовании ОУ в качестве компараторов напряжения возникает необходимость объединения их выходов. Разумеется, такую операцию нельзя проводить с моделями, для которых подобный вид соединения не предусмотрен (например, LM324). Микросхема LM389 имеет на выходе каскад на n-p-n транзисторе с открытым коллектором и допускает такое соединение. Типичное применение такой схемы — отслеживание аналоговой величины (например, напряжения батареи) и выдача сигнала в случае ее выхода за пределы заданного диапазона (рис. 2.12). Оба усилителя включены по схеме компаратора, один для верхнего порога, другой — для нижнего.


Михаил Николаенко читать все книги автора по порядку

Михаил Николаенко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Самоучитель по радиоэлектронике отзывы

Отзывы читателей о книге Самоучитель по радиоэлектронике, автор: Михаил Николаенко. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.