Дилатометрический метод – это метод, при помощи которого определяются критические точки металлов и сплавов, изучаются процессы распада твердых растворов, а также устанавливаются температурные интервалы существования упрочняющих фаз. Достоинство этих приборов – высокая чувствительность и независимость показаний от скорости изменения температуры.
Высокую чувствительность электрических методов измерения широко используют при исследовании фазовых превращений, дефектов тонкой структуры и других явлений, происходящих в металлах и сплавах, которые невозможно изучать другими методами исследования. Электрическое сопротивление измеряют с помощью различных мостовых схем, а также компенсационными методами. Различные способы магнитного анализа используют при исследовании процессов, связанных с переходом из парамагнитного состояния в ферромагнитное (или наоборот), причем возможна количественная оценка этих процессов. Магнитный анализ широко применяют при решении задач практического металловедения, например, таких, как исследование влияния на структуру режимов термической обработки, деформации, легирования. Возможно использование магнитного анализа и для решения некоторых более сложных задач физического металловедения.
Метод внутреннего трения основан на изучении необратимых потерь энергии механических колебаний внутри твердого тела. Используя этот метод, можно рассчитать коэффициенты диффузии с высокой точностью, в том числе и при низких температурах, где никакой другой метод неприменим; определять изменение концентрации твердых растворов; распределение примесей; получить информацию о фазовых и полиморфных превращениях и изменениях дислокационной структуры.
Магнитотвердые стали и сплавы применяют для изготовления постоянных магнитов. Для постоянных магнитов применяют высокоуглеродистые стали с 1 % С, легированные хромом (3 %) ЕХ3, а также одновременно хромом и кобальтом, ЕХ5К5, ЕХ9К15М2. Легирующие элементы повышают коэрцитивную и магнитную энергию.
В промышленности широкое применение получили сплавы типа алнико. Сплавы тверды, хрупки и не поддаются деформации, поэтому магниты из них изготовляют литьем, затем проводят шлифование.
Материалы делятся на диамагнетики, парамагнетики и ферромагнетики в зависимости от того, какова степень их магнитной восприимчивости и каков их знак.
Диамагнетики имеют отрицательную магнитную восприимчивость. Их намагничивание направлено противоположно приложенному магнитному полю. Это приводит к ослаблению данного поля. Диамагнетиками являются полупроводники (Si, Ge), диэлектрики (полимеры), некоторые непереходные металлы (Be, Cu, Ag, Pb).
Парамагнетики обладают низкой намагниченностью, которая возникает под воздействием внешнего поля. Парамагнетиками являются K, Na, Al и переходные металлы Mo, W, Ti.
Феромагнетики отличаются высокой магнитной восприимчивостью. К ним относятся: железо, кобальт, никель и гадолиний. Характеристики: остаточная индукция Вг, коэрцитивная сила Нс и магнитная проницаемость м = В/Н.
Остаточная индукция – магнитная индукция, которая остается в образце в результате его намагничивания и дальнейшего размагничивания.
Коэрцитивная сила – напряженность магнитного поля обратного знака, прилагаемая к образцу с целью его размагничивания.
Магнитная проницаемость является основной характеристикой интенсивности намагничивания. Определив тангенс угла наклона к первичной кривой намагничивания В = f(H), можно высчитать магнитную проницаемость. Сплав ЮНДК15 содержит 18–19 % Ni, 8.5–9.5 % Al, 14–15 % Co, 3–4% Cu.
Магнитомягкие стали (электротехническая сталь) (1212, 1311, 1511, 2011, 2013, 2211, 2312, 2412, 3415, 3416, 79НМ, 81НМА) применяютдля изготовления магнитопроводов постоянного и переменного тока. Они предназначены для изготовления якорей и полюсов машин постоянного тока, роторов и статоров асинхронных двигателей и др.
Парамагнитные стали (17Х18Н9, 12Х18Н10Т, 55Г9Н9Х3, 40Г14Н9Ф2, 40Х14Н9Х3ЮФ2 и др.) требуются в электротехнике, приборостроении, судостроении и специальных областях техники.
Недостаток этих сталей – низкий предел текучести (150-350МПа), что затрудняет их использование для высоко нагруженных деталей машин.
19. Значение механических и физических свойств при эксплуатации изделий
Свойства, как показатели качества материала
Свойства металлов делятся на физические, химические, механические и технологические. К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, теплоемкость, расширяемость при нагревании.
К химическим – окисляемость, растворимость и коррозионная стойкость. К механическим – прочность, твердость, упругость, вязкость, пластичность.
К технологическим – прокаливаемость, жидкотекучесть, ковкость, свариваемость, обрабатываемость резанием.
Прочностью металла называется его способность сопротивляться действию внешних сил, не разрушаясь. Твердостью называется способность тела противостоять проникновению в него другого, более твердого тела. Упругость – свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших изменение формы (деформацию).
Вязкостью называется способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость – свойство обратное хрупкости.
Пластичностью называется свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность – свойство обратное упругости.
Современными методами испытания металлов являются механические испытания, химический анализ, спектральный анализ, металлографический и рентгенографический анализы, технологические пробы, дефектоскопия. Эти испытания дают возможность получить представление о природе металлов, их строении, составе и свойствах, а также определить доброкачественность готовых изделий.
Механические испытания имеют важнейшее значение в промышленности.
Детали машин, механизмов и сооружений работают под нагрузками. Нагрузки на детали бывают различных видов: одни детали нагружены постоянно действующей в одном направлении силой, другие подвержены ударам, у третьих силы более или менее часто изменяются по своей величине и направлению.
Некоторые детали машин подвергаются нагрузкам при повышенных температурах, при действии коррозии; такие детали работают в сложных условиях.
В соответствии с этим разработаны различные методы испытаний металлов, с помощью которых определяют механические свойства. Наиболее распространенными испытаниями являются статическое растяжение, динамические испытания и испытания на твердость.
Статическими называются такие испытания, при которых испытуемый металл подвергают воздействию постоянной силы или силы, возрастающей весьма медленно.
Динамическими называют такие испытания, при которых испытуемый металл подвергают воздействию удара или силы, возрастающих весьма быстро.
Кроме того, в ряде случаев производятся испытания на усталость, ползучесть и износ, которые дают более полное представление о свойствах металлов.
Механические свойства – это достаточная прочность. Металлы обладают более высокой прочностью по сравнению с другими материалами, поэтому нагруженные детали машин, механизмов и сооружений обычно изготовляются из металлов.
Для изготовления рессор и пружин применяются специальные стали и сплавы, обладающие высокой упругостью.
Пластичность металлов дает возможность производить их обработку давлением (ковать, прокатывать).
Физические свойства. В авиа-, авто– и вагоностроении вес деталей часто является важнейшей характеристикой, поэтому сплавы алюминия и магния являются здесь особенно полезными.
Удельная прочность для некоторых алюминиевых сплавов выше, чем для мягкой стали. Плавкость используется для получения отливок путем заливки расплавленного металла в формы. Легкоплавкие металлы (свинец) применяются в качестве закалочной среды для стали. Некоторые сложные сплавы имеют низкую температуру плавления, что расплавляются в горячей воде. Такие сплавы применяются для отливки типографских матриц, в приборах, служащих для предохранения от пожаров.
Металлы с высокой электропроводностью используются в электромашиностроении, для устройства линий электропередачи, а сплавы с высоким электросопротивлением для ламп накаливания электронагревательных приборов.
Магнитные свойства металлов играют первостепенную роль в электромашиностроении (электродвигатели, трансформаторы), в электроприборостроении (телефонные и телеграфные аппараты).
Теплопроводность металлов дает возможность производить их равномерный нагрев для обработки давлением, термической обработки; она обеспечивает возможность пайки металлов, их сварки.