MyBooks.club
Все категории

А. Кашкаров - Электронные самоделки

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая А. Кашкаров - Электронные самоделки. Жанр: Техническая литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Электронные самоделки
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
206
Читать онлайн
А. Кашкаров - Электронные самоделки

А. Кашкаров - Электронные самоделки краткое содержание

А. Кашкаров - Электронные самоделки - описание и краткое содержание, автор А. Кашкаров, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Представлены описания самодельных устройств, доступных для повторения в домашних условиях начинающими радиолюбителями. Рассмотрены источники питания, таймеры, автоматы управления освещением, холодильником, сотовым телефоном, домашней сигнализацией, охранные системы, «радионяня» и другие конструкции на все случаи жизни для города и села, дома, гаража и дачи. Описаны индикаторы протечки, токовой перегрузки, датчики утечки газа, пожарной сигнализации, парковки и др. Даны практические советы и рекомендации по доработке и простому ремонту фотоаппаратов, сканеров, телефонов и другой бытовой техники.Для широкого круга читателей.

Электронные самоделки читать онлайн бесплатно

Электронные самоделки - читать книгу онлайн бесплатно, автор А. Кашкаров

Функцию данного электронного узла можно поменять на обратную — т. е. сделать так, чтобы пьезоэлектрический капсюль НА1 молчал первые 3 сек после подачи на устройство питания, а затем все остальное время работал. Для этого оксидный конденсатор С1 и времязадающий резистор R1 следует поменять местами (с соблюдением полярности включения оксидного конденсатора — положительной обкладкой к «плюсу» питания). При этом средняя точка их подключения к выводам 1 и 2 элемента DD1.1 сохраняется. В таком варианте устройство без особых изменений можно применять для звукового сигнализатора открытой (сверх меры) дверцы холодильника. Кроме того, вариантов применения данного простого и надежного устройства бесконечно много и они ограничены только фантазией радиолюбителя.

3.3.2. Налаживание

Устройство в налаживании не нуждается. Элементы устройства закрепляют на монтажной плате. Корпус для устройства — любой подходящий.

3.3.3. О деталях

Постоянные резисторы R1, R2 типа МЛТ-0,25. Пьезоэлектрический капсюль может быть любым, рассчитанным на напряжение 4…20 В постоянного тока, например, FMQ-2015D, FXP1212, KPI-4332-12.

Транзистор VT1 любой кремниевый, малой и средней мощности структуры n-p-n, например, КТ603, кТ608, КТ605, КТ801, КТ972, КТ940 с любым буквенным индексом. Источник питания — стабилизированный, обеспечивающий выходное напряжение 5…15 В — в этом диапазоне микросхема DA1 функционирует стабильно.

Элементы VD1 и R3 обеспечивают функцию защиты устройства от скачков питающего напряжения. Благодаря ограничительному резистору и стабилитрону, на данный узел можно «безболезненно» подавать постоянное напряжение до 24–26 В (что актуально при использовании устройства в цепях с питанием 24 В, например, в грузовых автомобилях некоторых марок).

Стабилитрон VD1 обеспечивает напряжение стабилизации в диапазоне 9-12 В. Его можно заменить на Д814А — Д814Д, BZX55, 1N4740A, 1N4742A или аналогичные.

Если такая защита не нужна, то элементы VD1 и R3 из схемы исключают, а напряжение питания подключают к точке А.

Ток потребления в активном режиме звукового сигнала с применением указанных на схеме элементов составляет 10–12 мА. Громкость звука достаточна настолько, что сигнал хорошо слышен в помещении на расстоянии до 10 м.

3.4. Универсальные светодиодные индикаторы токовой перегрузки для источников питания

Превышение выходного тока в источниках питания свидетельствует об увеличении потребляемой мощности в устройстве нагрузки. Иногда потребляемый ток в нагрузке (из-за неисправности соединений или самого устройства нагрузки) может увеличиться вплоть до значения тока короткого замыкания (к/з), что неминуемо приведет к аварии (если источник питания не снабжен узлом защиты от перегрузки).

Последствия перегрузки могут оказаться более существенными и непоправимыми, если использовать источник питания без узла защиты (как сегодня часто делают радиолюбители, изготавливая простые источники и покупая недорогие адаптеры) — увеличится энергопотребление, выйдет из строя сетевой трансформатор, возможно возгорание отдельных элементов и неприятный запах.

Для того чтобы вовремя заметить выход источника питания в «заштатный» режим, устанавливают простые индикаторы перегрузки. Простые — потому, что они, как правило, содержат всего несколько элементов, недорогих и доступных, а установить эти индикаторы можно универсально практически в любой самодельный или промышленный источник питания.

Самая простая электронная схема индикатора токовой перегрузки показана на рис. 3.4.

Работа ее элементов основана на том, что последовательно с нагрузкой в выходной цепи источника питания включают ограничивающий резистор малого сопротивления (R3 на схеме). Данный узел можно применять универсально в источниках питания и стабилизаторах с разным выходным напряжение (испытано в условиях выходного напряжения 5—20 В). Однако значения и номиналы элементов, указанных на схеме рис. 3.4, подобраны для источника питания с выходным напряжением 12 В. Соответственно, для того чтобы расширить диапазон источников питания для данной конструкции, в выходном каскаде которых будет эффективно работать предлагаемый узел индикации, потребуется изменить параметры элементов R1—R3, VD1, VD2.

Пока перегрузки нет, источник питания и узел нагрузки работают в штатном режиме, через R3 протекает допустимый ток и падение напряжения на резисторе невелико (менее 1 В). Также невелико в этом случае и падение напряжения на диодах VD1, VD2, при этом светодиод HL1 едва светится.

При увеличении тока потребления в устройстве нагрузки или коротком замыкании между точками А и Б ток в цепи возрастает, падение напряжения на резисторе R3 может достигнуть максимального значения (выходного напряжения источника питания), вследствие чего светодиод HL1 загорится (будет мигать) в полную силу. Для наглядного эффекта в схеме применен мигающий светодиод L36B. Вместо указанного светодиода можно применить аналогичные по электрическим характеристикам приборы, например, L56B, L456B (повышенной яркости), L816BRC-B, L769BGR, TLBR5410 или подобные им.

Мощность, рассеиваемая на резисторе R3 (при токе к/з) более 5 Вт, поэтому этот резистор изготавливается самостоятельно из медной проволоки типа ПЭЛ-1 (ПЭЛ-2) диаметром 0,8 мм.

Ее берут из ненужного трансформатора. На каркас из канцелярского карандаша наматывают 8 витков этого провода, концы ее облуживают, затем каркас вынимают. Проволочный резистор R3 готов.

3.4.1. О деталях

Все постоянные резисторы типа МЛТ-0,25 или аналогичные.

Вместо диодов VD1, VD2 можно установить КД503, КД509, КД521 с любым буквенным индексом. Эти диоды защищают светодиод в режиме перегрузки (гасят излишнее напряжение).

К сожалению, на практике нет возможности постоянно визуально следить за состоянием индикаторного светодиода в источнике питания, поэтому разумно дополнить схему электронным узлом звукового сопровождения. Такая схема представлена на рис. 3.5.

Как видно из схемы, она работает по тому же принципу, но в отличие от предыдущей, это устройство более чувствительно и характер его работы обусловлен открыванием транзистора VT1, при установлении в его базе потенциала более 0,3 В. На транзисторе VT1 реализован усилитель тока. Транзистор выбран германиевым. Из старых запасов радиолюбителя. Его можно заменить на аналогичные по электрическим характеристикам приборы: МП16, МП39—МП42 с любым буквенным индексом. В крайнем случае, можно установить кремниевый транзистор КТ 361 или КТ3107 с любым буквенным индексом, однако тогда порог включения индикации будет иным.

Порог включения транзистора VT1 зависит от сопротивления резисторов R1 и R2 и в данной схеме при напряжении источника питания 12,5 В индикация включится при токе нагрузки, превышающем 400 мА.

В коллекторной цепи транзистора включен мигающий светодиод и капсюль со встроенным генератором ЗЧ НА1. Когда на резисторе R1 падение напряжения достигнет 0,5…0,6 В, транзистор VT1 откроется, на светодиод HL1 и капсюль НА1 поступит напряжение питания. Поскольку капсюль для светодиода является активным элементом, ограничивающим ток, режим работы светодиода в норме. Благодаря применению мигающего светодиода капсюль также будет звучать прерывисто — звук будет слышен во время паузы между вспышками светодиода.

В этой схеме можно достичь еще более интересный звуковой эффект, если вместо капсюля НА1 включить прибор KPI-4332-12, который имеет встроенный генератор с прерыванием. Таким образом звук в случае перегрузки будет напоминать сирену (этому способствует сочетание прерываний вспышек светодиода и внутренних прерываний капсюля НА1). Такой звук достаточно громкий (слышно в соседнем помещении при среднем уровне шума), обязательно будет привлекать внимание людей.

Еще одна схема индикаторов перегрузки представлена на рис. 3.6.

В тех конструкциях, где установлен плавкий (или иной, например, самовосстанавливающийся) предохранитель, часто требуется визуально контролировать их работу. Простая разработка, схема которой показана на рис. 3.6, позволяет это сделать. Здесь применен двухцветный светодиод с общим катодом и соответственно тремя выводами. Кто на практике испытывал эти диоды с одним общим выводом, знают, что они функционируют несколько иначе, чем ожидается. Шаблон мышления в том, что казалось бы, зеленый и красный цвета будут появляться у светодиода в общем корпусе соответственно при приложении (в нужной полярности) напряжения к соответственным выводам R или G. Однако, это не совсем так.

Пока предохранитель FU1 исправен, к обоим анодам светодиода HL1 приложено напряжение. Порог свечения корректируется сопротивлением резистора R1. Если предохранитель обрывает цепь питания нагрузки, то зеленый светодиод гаснет, а красный остается светить (если напряжения питания совсем не пропало). Поскольку допустимое обратное напряжение для светодиодов мало и ограничено, то для указанной конструкции в схему введены диоды с разными электрическими характеристиками VD1—VD4. То, что к зеленому светодиоду последовательно включен только один диод, а к красному три, объясняется особенностями светодиода АЛС331А, замеченными на практике. При экспериментах оказалось, что порог напряжения включения красного светодиода меньше, чем у зеленого. Чтобы уравновесить эту разницу (заметную только на практике), количество диодов неодинаково.


А. Кашкаров читать все книги автора по порядку

А. Кашкаров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Электронные самоделки отзывы

Отзывы читателей о книге Электронные самоделки, автор: А. Кашкаров. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.