В последнее время сторонники «зеленой» энергетики делают в своих планах и декларациях упор на биотоплива второго и третьего поколения, то есть на использование непищевых отходов сельскохозяйственного производства и промышленное выращивание водорослей. Однако непищевые сельскохозяйственные отходы дают значительно более низкую отдачу с единицы площади, требуют более высоких расходов на сбор и подготовку сырья, а главное, содержат в основном целлюлозу и лигнин, промышленная переработка которых в биотопливо, несмотря на многолетние интенсивные исследования, пока осуществляется только в экспериментальных масштабах. Поэтому экономическая и тем более энергетическая эффективность использования такого сырья представляется еще более проблематичной.
Что касается водорослей, то основными аргументами в их пользу являются более высокая эффективность фотосинтеза, на уровне 6–8 % по сравнению в среднем с 1–2 % для наземных растений, а также отсутствие необходимости в использовании сельскохозяйственных угодий. Однако, во-первых, эффективность фотосинтеза кукурузы составляет около 7 %, т. е. практически не уступает водорослям, что, тем не менее, не делает производство из нее биоэтанола экономически и энергетически эффективным. А во-вторых, использование морских и океанских акваторий для промышленного производства биомассы на основе специально выведенных штаммов водорослей должно быть полностью исключено из-за возможных глобальных катастрофических экологических последствий. И даже использование для их производства изолированных природных водоемов не может исключить серьезные экологические последствия. Кроме того, так же, как и в сельском хозяйстве, объем и рентабельность такого производства в конечном счете будут определяться объемом и стоимостью вносимых удобрений и немалыми затратами традиционного топлива на сбор, подготовку и переработку полученного сырья.
Таким образом, ни энергетический, ни экономический аспекты промышленного сельскохозяйственного производства биотоплив в глобальных масштабах не выдерживают серьезной критики. Но, может быть, все окупается экологическими преимуществами «зеленой» энергетики? Однако «зеленое» на первый взгляд топливо оказывается совсем не таким уж «зеленым» при более строгом анализе. Ведь для компенсации земель, изымаемых для производства непродовольственных культур, будут нужны новые посевные площади. Это потребует сведения лесов, что приведет к уменьшению способности биосферы перерабатывать углекислый газ в кислород – таким образом, в противоположность декларируемым целям, концентрация углекислого газа в атмосфере только вырастет, а не уменьшится. В Индонезии и Малайзии для создания пальмовых плантаций для производства биодизеля была вырублена немалая часть тропических лесов. То же самое произошло на Борнео и Суматре. Поэтому, как показал ряд проведенных в последнее время исследований, с точки зрения снижения антропогенного выброса диоксида углерода, являющегося основным парниковым газом, оптимальной стратегией является максимальное снижение производства биотоплив и использование высвобождающихся площадей для посадок лесов, являющихся наиболее эффективными поглотителями СО2 из атмосферы.
Кроме того, сторонники тезиса об «экологической чистоте» биотоплив, как правило, не учитывают выбросы, образующиеся при производстве, обслуживании и последующей утилизации огромного и быстро выходящего из строя парка механизмов, необходимых для выращивания, сбора и переработки растительного сырья. Необходимо также учитывать огромный объем сжигаемого при этом традиционного топлива. То есть приводимые оценки экологических преимуществ биотоплив, мягко говоря, некорректны. Согласно имеющимся данным, при корректном расчете по всему жизненному циклу с учетом используемого для их производства оборудования и традиционных топлив, кукурузное и рапсовое топливо создает на 50–70 % больше парниковых газов, чем традиционный бензин и дизтопливо. При этом повышение эффективности использования традиционного бензина всего лишь на 3 % привело бы к экономии большего количества углеродного топлива, чем использование всего производимого в мире этанола.
Спорным остается и тезис о меньшей токсичности выхлопа автомобилей, использующих топливо с биодобавками. Безусловно, добавка к бензину кислородсодержащих соединений, таких, как этанол, увеличивает полноту сгорания топлива, снижая выбросы оксида углерода, ароматических углеводородов и частиц сажи. Но при этом в выхлопе появляются альдегиды (формальдегид и ацетальдегид) и ряд других соединений, наносящих живым организмам не меньший ущерб, чем ароматические углеводороды.
Разумеется, использование для производства энергии всевозможных бытовых и сельскохозяйственных отходов, особенно там, где они концентрируются в промышленных масштабах, или где такая концентрация экономически выгодна, необходимо и должно развиваться. Производство биотоплив, безусловно, будет продолжаться в особо благоприятных климатических условиях, например в Бразилии. Но добиваться их широкого внедрения в России, которая до сих пор импортирует до половины потребляемого продовольствия, и при этом, по самым скромным оценкам, из-за неэффективного использования бесполезно теряет до трети добываемого ископаемого топлива, вряд ли целесообразно.
Промышленное производство биотоплива в России в настоящее время в основном ограничено производством пеллет – топливных гранул, получаемых из отходов лесодобычи и деревообработки. Это самое дешевое биосырье, которое только можно себе вообразить. При этом теплотворная способность пеллет практически такая же, как у угля – ~19 МДж/кг, а сами пеллеты сравнительно дешевы. Этот бизнес в основном ориентируется на экспорт в Скандинавию, Италию и Германию. Более 100 российских заводов производят почти 1 млн тонн пеллет, из которых подавляющая часть идет на экспорт. Однако сейчас этот рынок практически полностью насыщен. Как в случае с любыми биотопливами, транспортировка на большие расстояния, выше несколько сот километров, делает производство пеллет нерентабельным. Внутренний же рынок пеллет практически не развивается. ТЭЦ, которые бы использовали пеллеты в промышленных масштабах, в стране пока нет. Поэтому даже во многих лесных регионах производство пеллет оказалось нерентабельным. Там выгоднее сжигать в котельных непосредственно первичные отходы лесопереработки. На основе отходов животноводства и растениеводства в различных регионах развивается местное производство биогаза. Видимо, эти направления и являются наиболее разумными для отечественного производства биотоплив.
Правда, в прессе и даже в научных изданиях регулярно публикуются утверждения, что «Россия обладает крупнейшими в мире возобновляемыми запасами биомассы, пригодной для использования в энергетических целях, доступные запасы которой эквивалентны 300 млрд кВтч электроэнергии». К сожалению, эти публикации никогда не сопровождаются экономическим анализом тех затрат, которые необходимы для того, чтобы собрать эту биомассу с необъятных российских просторов, транспортировать за сотни километров к пунктам переработки и превратить в биотопливо или непосредственно энергию.
Что же в итоге? Мы приходим к вполне определенному выводу, что фундаментальные характеристики известных нам возобновляемых источников энергии: их общий энергетический потенциал, характерная плотность потока энергии, отношение получаемой энергии к энергозатратам на ее получение и себестоимость получаемой энергии не позволяют в обозримой перспективе рассчитывать на глобальную роль этих источников в мировой энергетике.
Несколько веков назад человечество начинало свою промышленную революцию, целиком полагаясь на «экологически чистые» возобновляемые источники энергии – биотопливо (дрова), энергию воды и ветра. Реалии технологического развития еще два века назад убедительно показали, что интенсивное промышленное производство не может базироваться на этих источниках из-за низкой плотности потока производимой ими энергии. И тем более этот путь, уже давно показавший свою экономическую и технологическую несостоятельность, не может стать панацеей для многократно выросшего и более энерговооруженного человечества.
Глава 5. Энергетика и климат
5.1. Тепловой баланс планеты
Одним из главных аргументов в пользу более широкого использования альтернативных источников энергии является утверждение о значительно меньшем негативном влиянии на окружающую среду и, главное, климат нашей планеты. Но прежде чем обсуждать влияние современной энергетики на климат, необходимо кратко рассмотреть факторы, определяющие его основные параметры. В наибольшей степени климат, т. е. условия на земной поверхности, определяются атмосферой и гидросферой Земли. В свою очередь, формирование атмосферы и гидросферы тесно связано с процессом дегазации земных недр, который продолжается и в настоящее время, хотя и намного менее интенсивно, чем в предыдущие геологические эпохи. Дегазация является следствием дифференциации под действием силы тяжести земного вещества и выделением гравитационной энергии в недрах планеты. Интенсивность этого процесса достигла максимума примерно 3 млрд лет назад и с тех пор непрерывно снижается. Первичная атмосфера Земли состояла в основном из паров воды, СО2, а также таких газов, как H2S, CO, H2, N2, CH4, NH3, HF, HCl, Ar, то есть была по своему химическому составу восстановительной.