в) центр распределения расположен правильно, однако ширина распределения совпадает с шириной поля допуска. Есть опасения, что при рассмотрении всей партии появятся дефектные изделия. Необходимо исследовать точность оборудования, условия обработки и т. д. либо расширить поле допуска;
г) центр распределения смещен, что свидетельствует о присутствии дефектных изделий. Необходимо путем регулировки переместить центр распределения в центр поля допуска и либо сузить ширину распределения, либо пересмотреть допуск;
д) ситуация аналогична предыдущей, аналогичны и меры воздействия;
е) в распределении 2 пика, хотя образцы взяты из одной партии. Объясняется это либо тем, что сырье было 2-х разных сортов, либо в процессе работы была изменена настройка станка, либо в партию соединили изделия, обработанные на 2-х разных станках. В этом случае следует производить обследование послойно;
ж) и ширина, и центр распределения — в норме, однако незначительная часть изделий выходит за верхний предел допуска и, отделяясь, образует обособленный островок. Возможно, эти изделия — часть дефектных, которые вследствие небрежности были перемешаны с доброкачественными в общем потоке технологического процесса. Необходимо выяснить причину и устранить ее.
6. Диаграмма разброса (рассеяния) применяется для выявления зависимости (корреляции) одних показателей от других или для определения степени корреляции между n парами данных для переменных x и у:
(x1,y1), (x2,y2),…, (xn, yn).
Эти данные наносятся на график (диаграмму разброса), и для них вычисляется коэффициент корреляции по формуле
где
δky — ковариация;
δx, δy — стандартные отклонения случайных переменных x и у;
n — размер выборки (количество пар данных — xi и xi);
x и y — среднеарифметические значения xi и xi соответственно.
Рассмотрим различные варианты диаграмм разброса (или полей корреляции) на рис. 4.18:
Рис. 4.18. Варианты диаграмм разброса
В случае:
а) можно говорить о положительной корреляции (с ростом x увеличивается у);
б) проявляется отрицательная корреляция (с ростом x уменьшается у);
в) при росте x у может как расти, так и уменьшаться, говорят об отсутствии корреляции. Но это не означает, что между ними нет зависимости, между ними нет линейной зависимости. Очевидная нелинейная (экспоненциальная) зависимость представлена и на диаграмме разброса г).
Коэффициент корреляции всегда принимает значения в интервале -1 ≤ r ≤ 1, то есть при r > 0 — положительная корреляция, при r = 0 — нет корреляции, при r < 0 — отрицательная корреляция.
Для тех же n пар данных (x1, y1), (х2, у2),…, (xn, уn) можно установить зависимость между x и у. Формула, выражающая эту зависимость, называется уравнением регрессии (или линией регрессии), и ее представляют в общем виде функцией
у = а + bx.
Для определения линии регрессии (рис. 4.19) необходимо статистически оценить коэффициент регрессии b и постоянную a. Для этого должны быть выполнены следующие условия:
1) линия регрессии должна проходить через точки (x,y) средних значений x и у;
2) сумма квадратов отклонений от линии регрессии значений у по всем точкам должна быть наименьшей;
3) для расчета коэффициентов а и b используются формулы
то есть уравнением регрессии можно аппроксимировать реальные данные.
Рис. 4.19. Пример линии регрессии
7. Контрольная карта.
Одним из способов достижения удовлетворительного качества и поддержания его на этом уровне является применение контрольных карт. Для управления качеством технологического процесса необходимо иметь возможность контролировать те моменты, когда выпускаемая продукция отклоняется от заданных техническими условиями допусков. Рассмотрим простой пример. Проследим за работой токарного станка в течение определенного времени и будем измерять диаметр детали, изготавливаемой на нем (за смену, час). По полученным результатам построим график и получим простейшую контрольную карту (рис. 4.20):
Рис. 4.20. Пример контрольной карты
В точке 6 произошла разладка технологического процесса, необходимо его регулирование. Положение ВКГ и НКГ определяется аналитически либо по специальным таблицам и зависит от объема выборки. При достаточно большом объеме выборки пределы ВКГ и НКГ определяют по формулам
ВКГ и НКГ служат для предупреждения разладки процесса, когда изделия еще соответствуют техническим требованиям.
Контрольные карты применяются, когда требуется установить характер неисправностей и дать оценку стабильности процесса; когда необходимо установить, нуждается ли процесс в регулировании или его необходимо оставить таким, каков он есть.
Контрольной картой можно также подтвердить улучшение процесса.
Контрольная карта является средством распознания отклонений из-за неслучайных или особых причин от вероятных изменений, присущих процессу. Вероятные изменения редко повторяются в прогнозируемых пределах. Отклонения из-за неслучайных или особых причин сигнализируют о том, что некоторые факторы, влияющие на процесс, необходимо идентифицировать, расследовать и поставить под контроль.
Контрольные карты основываются на математической статистике. Они используют рабочие данные для установления пределов, в рамках которых будут ожидаться предстоящие исследования, если процесс останется неэффективным из-за неслучайных или особых причин.
Информация о контрольных картах содержится и в международных стандартах ИСО 7870, ИСО 8258.
Наибольшее распространение получили контрольные карты среднего значения X и контрольные карты размаха R, которые используются совместно или раздельно. Контролироваться должны естественные колебания между пределами контроля. Нужно убедиться, что выбран правильный тип контрольной карты для определенного типа данных. Данные должны быть взяты точно в той последовательности, в какой собраны, иначе они теряют смысл. Не следует вносить изменения в процесс в период сбора данных. Данные должны отражать, как процесс идет естественным образом.
Контрольная карта может указать на наличие потенциальных проблем до того, как начнется выпуск дефектной продукции.
Принято говорить, что процесс вышел из-под контроля, если одна или более точек вышли за пределы контроля.
Существуют два основных типа контрольных карт: для качественных (годен — негоден) и для количественных признаков. Для качественных признаков возможны четыре вида контрольных карт: число дефектов на единицу продукции; число дефектов в выборке; доля дефектных изделий в выборке; число дефектных изделий в выборке. При этом в первом и третьем случаях объем выборки будет переменным, а во втором и четвертом — постоянным.
Таким образом, целями применения контрольных карт могут быть: выявление неуправляемого процесса; контроль за управляемым процессом; оценивание возможностей процесса.
Обычно подлежит изучению следующая переменная величина (параметр процесса) или характеристика: известная важная или важнейшая; предположительная ненадежная; по которой нужно получить информацию о возможностях процесса; эксплуатационная, имеющая значение при маркетинге.
При этом не следует контролировать все величины одновременно. Контрольные карты стоят денег, поэтому нужно использовать их разумно: тщательно выбирать характеристики; прекращать работу с картами при достижении цели: продолжать вести карты только тогда, когда процессы и технические требования сдерживают друг друга.
Необходимо иметь в виду, что процесс может быть в состоянии статистического регулирования и давать 100 % брака. И наоборот, может быть неуправляемым и давать продукцию, на 100 % отвечающую техническим требованиям.
Контрольные карты позволяют проводить анализ возможностей процесса. Возможности процесса — это способность функционировать должным образом. Как правило, под возможностями процесса понимают способность удовлетворять техническим требованиям.
Существуют следующие виды контрольных карт:
1. Контрольные карты для регулирования по количественным признакам (измеренные величины выражаются количественными значениями):