При нагреве меди в атмосфере, содержащей водород, происходит его диффузия в глубь меди. Если в меди присутствуют включения Си2О, то они реагируют с водородом, в результате чего образуются пары воды. Две основные группы медных сплавов: латуни – сплавы меди с цинком; бронзы – сплавы меди с другими элементами.
Латуни – это многокомпонентные сплавы на основе меди, где основным компонентом является цинк. Технические латуни содержат до 40–45 % Zn. К однофазным б-латуням, которые легко деформируются в холодном и горячем состоянии, относятся Л96 (томпак), Л80 (полутомпак), Л68, обладающая наибольшей пластичностью. Двухфазные (α + β) – латуни, Л59 и Л60 менее пластичны в холодном состоянии и их подвергают горячей обработке давлением.
По технологическому признаку латуни подразделяют на две группы: деформированные и литейные. Литейные латуни мало склонны к ликвидации и обладают антифрикционными свойствами
Деформируемые латуни обладают высокими коррозийными свойствами в атмосферных условиях.
Латуни, предназначение которых для фасонного литья, содержат большое количество специальных присадок, улучшающих их литейные свойства.
Оловянные бронзы. Сплавы, богатые оловом, очень хрупки. Оловянные бронзы обычно легируют Zn, Ре, P, Pb, Ni и другими элементами. Цинк улучшает технологические свойства бронзы и удешевляет бронзу. Фосфор улучшает литейные свойства. Никель повышает механические свойства, коррозийную стойкость и плотность отливок и уменьшает ликвацию. Железо измельчает зерно, но ухудшает технологические свойства бронз и сопротивляемость коррозии.
Различают деформируемые и литейные оловянные бронзы, которые обладают хорошими литейными свойствами. Двухфазные бронзы обладают высокими антифрикционными свойствами. Их применяют для изготовления антифрикционных деталей.
Никелевые сплавы широко распространены в машиностроении. Никель сообщает меди повышенную стойкость против коррозии и улучшает ее механические и литейные свойства. Бронзы, которые содержат только никель, не применяются из-за высокой стоимости никеля. Никель вводится в сочетании с другими элементами.
В промышленности распространены никелевые сплавы, которые имеют названия: мельхиор (сплав меди с 18–20 % никеля) – применяется для гильз, имеет белый цвет и высокую коррозийную стойкость; константан – сплав меди с 39–41 % никеля. Константан имеет большое электрическое сопротивление и применяется в виде проволок и лент для реостатов, электроизмерительных приборов.
Медь и ее сплавы находят широкое применение в электротехнике, электронике, приборостроении, литейном производстве, двигателестроении. Так, 50 % полученной меди потребляется электротехнической и электронной отраслями промышленности. Она стоит на втором месте (вслед за алюминием) по объему производства среди цветных металлов.
Технические и технологические свойства меди: высокие электро– и теплопроводность, достаточная коррозионная стойкость, хорошая обрабатываемость давлением, свариваемость всеми видами сварки, хорошо поддается пайке, легко полируется. У чистой меди небольшая прочность и высокая пластичность. К недостаткам меди относятся:
– высокая стоимость;
– значительная плотность;
– большая усадка при литье;
– горячеломкость;
– сложность обработки резанием.
Магний является химически активным металлом: образующаяся на воздухе оксидная пленка МдО в силу более высокой плотности, чем у самого магния, растрескивается и не имеет защитных свойств; порошок и стружка магния легко воспламеняются; горячий и расплавленный магний при контакте с водой происходит взрыв.
Магний и его сплавы плохо сопротивляются коррозии, обладают пониженной жидкотекучестью при литье, пластически деформируются лишь при повышенных температурах (225 °C и более). Последнее обусловлено тем, что сдвиг в гексагональной решетке магния при низких температурах осуществляется лишь по плоскости базиса (основание шестигранной призмы). Нагрев до 200–300 °C приводит к появлению дополнительных плоскостей скольжения и, соответственно, повышению пластичности. Малая диффузионная подвижность атомов в магниевых сплавах приводит к замедлению фазовых превращений в них. Поэтому термическая обработка (диффузионный или рекристаллизационный отжиг, закалка, старение) требует больших выдержек (до 24 ч).
В то же время магниевые сплавы характеризуются высокой удельной прочностью, хорошо поглощают вибрации, не взаимодействуют с ураном. Они хорошо обрабатываются резанием и удовлетворительно свариваются аргонодуговой и контактной
сваркой. Основными легирующими элементами в магниевых сплавах являются Мп, Al и Zn.
Марганец повышает коррозионную стойкость и свариваемость сплавов магния. Алюминий и цинк оказывают большое влияние на прочность и пластичность магниевых сплавов: максимальные значения механических характеристик достигаются при введении в сплав 6–7% алюминия или 4–6% цинка. Эти элементы (Al, Zn) образуют с магнием упрочняющие фазы, выделяющиеся в мелкодисперсном виде после закалки со старением.
Цирконий, титан, щелочноземельные (Са) и редкоземельные (Се, 1а) металлы и торий измельчают зерно, раскисляют сплав, повышают его жаропрочность.
По технологии изготовления изделий магниевые сплавы разделяют на литейные (маркировка «МЛ») и деформируемые («МА»). Магниевые сплавы подвергаются различным видам термической обработки.
Так, для устранения ликвации в литых сплавах (растворения выделившихся при литые избыточных фаз и выравнивания химического состава по объему зерен) проводят диффузионный отжиг (гомогенизацию) фасонных отливок и слитков (400–490 °C, 10–24 ч). Наклеп снимают рекристаллизационным отжигом при 250–350 "С, в процессе которого уменьшается также анизотропия механических свойств, возникшая при пластической деформации.
Магниевые сплавы в зависимости от состава могут упрочняться закалкой (часто с охлаждением на воздухе) и последующим старением при 150–200 о С (режим Тб). Ряд сплавов закаливается уже в процессе охлаждения отливок или поковок и может сразу упрочняться искусственным старением (минуя закалку). Но в большинстве случаев ограничиваются только гомогенизацией (закалкой) при 380–540 °C (режим Т4), т. к. последующее старение, повышая на 20–35 % прочность, приводит к снижению пластичности сплавов. Литейные сплавы.
В литых магниевых сплавах повышения механических свойств добиваются измельчением зерна посредством перегрева расплава или его модифицирования добавками мела или магнезита.
При этом в расплаве образуются твердые частицы, становящиеся центрами кристаллизации. Для предотвращения возгорания магниевых сплавов их плавку ведут в железных тиглях под слоем флюса, а разливку – в парах сернистого газа, образующегося при введении серы в струю металла. При литье в песчаные формы в смесь вводят специальные добавки (фториды алюминия) для уменьшения окисления магния. Среди литейных магниевых сплавов широкое применение нашли сплавы МЛ5 и МЛ6, отличающиеся повышенными литейными и механическими свойствами. Они могут упрочняться как гомогенизацией и закалкой на воздухе (Т4), так и добавочным старением (Т6).
Деформируемые сплавы.
Деформированный (прессованный) магний обладает более высоким комплексом механических свойств, чем литой.
Деформируемые сплавы производят в виде поковок, штамповых заготовок, горячекатаных полос, прутков и профилей. Температурные интервалы технологических процессов обработки давлением магниевых сплавов находятся в следующих пределах: прессование при 300–480 °C, прокатка при 440–225 °C и штамповка (в закрытых штампах) при 480–280 °C. Хорошей коррозионной стойкостью, свариваемостью и технологической пластичностью отличается сплав МА1, относящийся к группе сплавов низкой прочности.
Сплав МА2-1 сочетает в себе оптимальный комплекс механических и технологических свойств (хорошо сваривается, штампуется), но подвержен коррозии под напряжением. Жаропрочным (до 250 °C) является сплав системы (Мд-Zn-Zr) МА14. Сплав упрочняется искусственным старением (режим Т5) после прессования и охлаждения на воздухе. Он характеризуется повышенными механическими свойствами, но склонен к образованию при прокатке горячих трещин.
Применение магниевых сплавов. Из сплавов магния изготавливают корпуса ракет, насосов, приборов, топливные и кислородные баки, рамы двигателя, кожухи. Так, сплавы МЛ5 и МЛ6 используются для литья тормозных барабанов, штурвалов, коробок передач, МЛ10 – деталей приборов высокой герметичности.
Арматуры, бензо– и маслосистемы, а также сварные детали изготавливают из деформируемых сплавов МА1, высоконагруженные детали – из МА14.
Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.