Даже сами авторы проекта считают, что его осуществление может стать реальным не ранее конца следующего века. Хотя принципиальных трудностей как будто бы нет, тем не менее технические и финансовые проблемы надо характеризовать как грандиозные.
Пожалуй, еще более спорными выглядят проекты, где используется идея «светового паруса». Она восходит к знаменитым опытам нашего соотечественника П. Н. Лебедева, который продемонстрировал, что свет оказывает давление на легкие крылышки. Давление солнечного излучения давно вымело из ближайших окрестностей пыль и газ, оставшиеся там от протозвездного облака, из которого родились и само Солнце, и планеты. Большой бы парус из тонкой зеркальной пленки — вот и весь двигатель для полета за пределы Солнечной системы! Правда, давление это и возле Земли-то мало, а чем дальше от Солнца, тем оно меньше. Неутомимый на выдумки Р. Форвард предложил прибегнуть к мощному лазеру: узким лазерным пучком можно годами освещать парус, что позволит разогнать его, по уверениям автора, до субсветовых скоростей. Но не надо забывать про столкновения с частицами межзвездной среды, которые разрушат такой корабль раньше, чем ему удастся достичь скорости, оправдывающей подобную экспедицию. Кроме того, физические свойства нашей Вселенной не позволят при освещении паруса поддерживать ориентацию лазерного луча с нужной точностью на расстояниях в сотни астрономических единиц.
Рис. 11. Межзвездный корабль со световым парусом, освещаемым лазерным лучом из Солнечной системы и увлекающим за собой полезную нагрузку — еще один «экспонат» для кунсткамеры несбыточных проектов.
В 1985 г. на XX Чтениях К. Э. Циолковского авторами этой статьи был предложен свой «академический» проект межзвездного корабля основанный на использовании фокусирующих свойств магнитного поля, возникающего вокруг полого витка с током (рис. 12, 13).
Виток имеет форму тора (кольца) и снаружи покрыт сверхпроводящей пленкой, температура которой не должна превышать 21 К. Речь идет о достаточно обычных сверхпроводниках, при изготовлении которых не возникнет особых технических трудностей. Более того, за прошедшие с тех пор годы открыто целое семейство высокотемпературных керамических сверхпроводников, и можно ждать, что еще до конца века будет налажено серийное производство сверхпроводящих материалов, работающих при комнатной температуре.
Если на оси симметрии подобного кольцевого электромагнита (магнитного зеркала) в результате какой-либо ядерной реакции образуются заряженные частицы, то магнитное поле «вытолкнет» их в сторону падения своей напряженности (в основном, в направлении от центра тора) и передаст импульс вытолкнутых частиц витку. Размеры тора и силу тока в нем, расстояние до точки взрыва и его мощность можно подобрать так, чтобы ни взрывы не разрушали магнита, ни магнитное поле не «портило» сверхпроводника (при больших напряженностях эффект сверхпроводимости исчезает). Частота взрывов подбирается, исходя из времени, за которое будет излучена та тепловая энергия, что поглощается тором при каждом из них.
Сверхпроводящая пленка, способная сохранять свои свойства в очень сильном магнитном поле, имеет толщину всего 0,1 мм. Однако давление самого магнитного поля слишком велико, чтобы у нее хватило собственной механическом прочности. Видимо, под пленкой должна быть высокопрочная основа, например, из кeвлара или, еще лучше, бороволокна.
Всю полезную нагрузку нужно размещать на звездолете спереди — как можно дальше от того места, где рождаются пусть даже редкие гамма-кванты.
Рис. 12. Схема звездолета с импульсным термоядерным двигателем и электромагнитом в виде сверхпроводящего тора.
Электромагнитные пушки (ускорители) направляют в зону реакции термоядерные заряды (мишени), которые взрываются под действием лазера. Образовавшиеся заряженные частицы, закручиваясь вокруг магнитных силовых линий, отражаются магнитным полем и передают своя импульсы возбуждающему его электромагниту (тору). Так происходит разгон корабля.
Ядерная реакция рассматривалась в двух вариантах: синтез протона и бора-11 и аннигиляция протона и антипротона. Среди продуктов обеих реакций нет свободных нейтронов и мало гамма-квантов. Материалом для первой из них могли бы послужить бороводородные соединения — бораны, внешне похожие на стеарин, из которого делают свечки. Хранение, дозировка и подача микрозарядов в зону взрыва в данном случае совсем несложны. Все три проблемы при аннигиляционной реакции решать гораздо труднее. Но зато с инициацией реакции все наоборот: она достаточно проста при аннигиляции в то время как для бороводородного синтеза никакого надежного способа нет. Правда, не исключено, что в процессе конструирования мощных лазеров для изотопной химии и управляемого термоядерного синтеза в ближайшем будущем и эта задача будет решена.
Во время работы двигателя заряженные частицы, движущиеся вблизи оси тора будут не отражаться магнитным зеркалом, а пролетать сквозь него. У этих частиц своя особая роль — ионизовывать встречные атомы и пылинки межзвездной среды перед звездолетом, а уж ионы отбросит от корабля то же магнитное поле тора.
Рис. 13. Взаимодействие «магнитного зеркала» и заряженных частиц в двигателе звездолета изображенного на рис. 12. Все силовые линяй возбуждаемого магнитного поля проходят внутри тора, сгущаясь в его плоскости. Там, где густота линии максимальна, и напряженность поля самая большая. Всякая заряженная частице, продвигаясь в магнитном поле, «сминает» его. Если энергия частицы меньше энергии деформации магнитного поля, то она сначала затормозится, а потом отбросится полем в сторону уменьшения напряженности (туда, где густота силовых линий меньше). Только тем частицам, что движутся через центральную часть тора, удается преодолеть магнитный отражатель. Магнитное поле кольцевых токов создает давление внутри тора, имитируя его каркас.
Тяга термоядерного двигателя при диаметре тора 66 м и толщине 22 м составит 30 т. На изготовление тора потребуется 28 т бороволокна и 6 т сверхпроводящей пленки. При массе корабля и полезной нагрузки в 150 т для разгона до скорости 10 000 км/с и торможения у цели экспедиции нужно будет взять с собой всего 960 т топлив. В итоге стартовый вес звездолета составит примерно 1110 т. что в 2 раза меньше, чем у космической системы типа «Спейсшаттл»! Но стартовать все-таки при такой тяге придется из космоса.
Тот же звездолет годится и для полетов внутри Солнечной системы. Тогда для двух разгонов до скорости 1000 км/ч и двух торможений хватило бы 75 т топлива, а путешествие до Плутона и обратно продлилось бы всего 4 месяца.
Оценки меняются, сели выбор падает на реакцию аннигиляции. Размеры заметно увеличиваются:
диаметр тора — до 600 м, толщина — до 200 м. а вот конструкционных материалов нужно меньше — всего 22,4 т. Получается прямо-таки огромный мыльный пузырь! А дело все в том, что из-за большего расстояния от центра тора до зоны реакции (500 м) напряженность магнитного поля в центре тора уменьшается в 30 раз по сравнению с термоядерным двигателем.
Для одного разгона до скорости 150 000 км/с (половина скорости света) и одного торможения в конце пути потребуется 270 т топлива, из которых половина — антивещество. Такой звездолет долетит до звезды Альфа Центавра за 12 лет, а путь до Эпсилона Эридана преодолеет за 24,8 года.
Человечество еще только начинает осваивать Солнечную систему, но уже мечтает о полетах к другим звездным мирам. Мы не сомневаемся, что в следующем XXI веке посланные земной цивилизацией корабли проложат первые трассы в просторах Галактики. Какими они будут, первые звездолеты? Будут ли похожи на свои прообразы, что рождаются в головах писателей и ученых? Вряд ли. А может быть, все-таки…