MyBooks.club
Все категории

М. Бабаев - Приборостроение

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая М. Бабаев - Приборостроение. Жанр: Техническая литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Приборостроение
Автор
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
117
Читать онлайн
М. Бабаев - Приборостроение

М. Бабаев - Приборостроение краткое содержание

М. Бабаев - Приборостроение - описание и краткое содержание, автор М. Бабаев, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
В книге вы найдете информативные ответы на все вопросы курса «Приборостроение» в соответствии с Государственным образовательным стандартом.

Приборостроение читать онлайн бесплатно

Приборостроение - читать книгу онлайн бесплатно, автор М. Бабаев

При известных Х0 и δ ординаты кривой функции f(x) можно вычислить по формуле


где t – нормированная переменная,


(t) плотность вероятности z. Если подставить z и (t) в формулу, то следует:


Кривую З.Н.Р. часто называют кривой Гаусса, этот закон описывает очень многие явления в природе.

10. Биноминальный и полиноминальный законы распределения. Равновероятное распределение. Закон распределения эксцентриситета

1. Биноминальный закон распределения. Этот закон математически выражается формулой разложения бинома (q + p)2 в следующем виде


где n! – читается как n-факториал,

Cnm – биноминальный коэффициент, выражающий количество сочетаний из n элементов по m, причем, n – положительное целое число.

2. Полиномиальный закон распределения (П/З/Р). В предыдущем случае рассмотрено два исхода появления случайного события А: или оно появится с вероятностью р, или не появится с вероятностью q = 1 – p.

Когда количество независимых испытаний равно n, то велика вероятность того, что каждое событие Vi произойдет n раз, где i =1, 2,..., k. Причем 

 определяется формулой


В виде формулы (58) получен искомый полиномиальный полиноминальный закон распределения.

3. Равновероятное распределение. Рассматривая вышеприведенные законы распределения случайной величины, пришлось подчеркнуть различия в их проявлении при условиях: прерывно ли распределение случайных величин или непрерывно?

Другое название этого закона – равномерное, или прямоугольное распределение, несет в себе больше информации о кривой этого закона. Вероятность наступления случайного события А на рассматриваемом промежутке одинакова в любой точке из промежутка[в; с]. Для Р/Р плотность


где в, с – параметры З/Р/Р.

Функция распределения для З/Р/Р имеет вид:

11. Другие законы распределения

В технической промышленности, в том числе приборостроении, применяются некоторые другие виды законов распределения, кроме вышерассмотренных. При этом распределение случайных величин идет уже по самым разнообразным их параметрам. Приведем краткое изложение еще трех законов распределения случайной величины.

1. Композиция законов распределения, так называют закон распределения суммы случайных величин, причем слагаемые суммы заданы предварительно.

Если рассмотреть случайную переменную Ж = X + Y, где X и Y имеют соответствующие плотности вероятности и независимы, то плотность вероятности Z


где t выступает как переменная интеграции. Замечено: какому закону распределения следуют X и Y, тому же следует Z.

2. Экспоненциальный закон распределения. Этому закону распределения следуют случайные величины, удовлетворяющие условию. Его плотность вероятности


Функция распределения


В формулах xo – среднее значение случайной величины.

Этот закон находит применение при исследовании самых разнообразных вопросов в средствах автоматики, в производстве радиоэлектронной аппаратуры. Например, для определения вероятности безотказной работы в течение времени X > x.

3. Закон распределения Стьюдента. Этот закон представляет интерес, если число выборок n < 30, при n > 30 он переходит в нормальный закон распределения. Закон имеет следующий вид:


где n – объем выборки,

t – случайная переменная.

Из-за ее сложного вида не приводим формулу для плотности вероятности (), отметим только, что функция () является четной и ее кривая симметрична относительно оси ординат. Функция распределения этого закона имеет следующий вид:


Формула читается так: вероятность того, что случайная переменная t примет значение меньше заданного t0, есть интеграл от плотности этой вероятности (t).

12. Взаимозаменяемость как важнейший конструкторский принцип в приборостроении

Современное приборостроение развивается в направлении все большего вторжения радиоэлектронной аппаратуры в машиностроение. Удобно объяснить роль взаимозаменяемости на примере электронного приборостроения. Ясно, что совокупно различные радиоэлектронные аппараты состоят практически из одних и тех же радиоэлектронных деталей, как и различные слова, предложения, текст самой этой книги состоят из одних и тех же букв.

В радиоэлектронике радиодетали характеризуются максимальным и минимальным напряжениями, токами, мощностью, входными и выходными параметрами и, разумеется, геометрическими размерами радиодеталей. Радиоэлектронное приборостроение является частным случаем приборостроения.

В радиоэлектронике производство самих радиодеталей и радиоэлектронные аппараты носят унифицированный характер.

В других секторах приборостроения эта унификация достигается с соблюдением определенной погрешности (допуска) других параметров: гидравлических, оптических, механических и т. д.

В итоге одни и те же, например, подшипники находят применение в производстве, казалось бы, совсем отдаленных друг от друга изделий.

Таких взаимозаменяемых узлов и деталей, которые позволяют сборку самых разнообразных приборов, механизмов без предварительной обработки этих узлов, в машиностроении очень много: такое свойство узлов (деталей) называют взаимозаменяемостью.

Взаимозаменяемость – это важнейший принцип проектирования, производства и эксплуатации, который обеспечивает сборку (ремонт) независимо изготовленных деталей в узел (узлы) механизмов (приборов). Взаимозаменяемость как принцип предъявляет к узлам (деталям) следующие требования к точности их параметров: геометрическая, механическая, электрическая, и т. п.

При соблюдении точности по вышеуказанным параметрам, технические характеристики узлов (изделий) окажутся в заданных (допустимых) пределах, а их производство – рентабельным.

Достижение вышеуказанных требований в немалой степени зависит от качества материала, из которого изготавливаются узлы изделий. Качеством материала (а это его химические и физические свойства) задается долговечность узлов изделий в приборостроении.

В современном машиностроении целые заводы, полностью работающие в автоматизированном режиме, – привычное явление. Такая степень автоматизации, кооперации, специализации современного производства невозможна без взаимозаменяемости.

Взаимозаменяемость узлов и деталей следует из требований к их точности, а также из необходимости унификации, нормализации, стандартизации.

Требование к точности унифицированных узлов предполагает:

1) наличие определенного стандарта для каждого вида изделий, выражается в нормализации допуска к этой самой точности;

2) соблюдение специфической технологии для каждого вида серийно выпускаемого изделий;

3) соблюдение единства мер (последнее обеспечивает непрерывная поверка измерительных средств).

13. Классификация взаимозаменяемости

По степени сопряжения различается:

1. Полная взаимозаменяемость (когда степень сопрягаемости очень высокая) – прочие физические параметры узлов точно соответствуют заданному, а это диктует их соответствие определенной задан-ности, которая ограничена минимальными и максимальными значениями, а последние следуют из эксплуатационных требований, сама граница допуска рассчитывается по теоретико-вероятностному методу, который изложен в предыдущей главе.

Когда взаимозаменяемость полная, то упрощается сборка, растет масштабность кооперации, повышается степень специализации и обеспечения запчастями, а также эффективность производства, в силу более рационального расхода времени, высокого темпа работы.

В итоге становятся возможными конвейерное производство, организация цехов автоматизированных заводов. Все вышеуказанные достоинства этого вида взаимозаменяемости были бы невозможны без соблюдения довольно жестких требований к точности параметров.

2. Исходя из геометрических параметров и учитывая, насколько присоединяемы узлы различают внешнюю взаимозаменяемость, когда речь идет о сравнении наружных и внутренних размеров, и внутреннюю взаимозаменяемость, когда речь идет о том же самом, однако рассматриваются внутренние части узлов и деталей.

3. Функциональная взаимозаменяемость. Имеется в виду взаимозаменяемость узлов, когда, несмотря на различие между ними по некоторым параметрам, это различие не сказывается на выполнении функций, для которых они предназначены.

Само собой разумеется, что задать теоретически границы допуска при функциональной взаимозаменяемости невозможно, это делается эмпирически.

После анализа полученных результатов (степени их влияния на работу установок и механизмов, на эксплу-тационные методы) устанавливают оптимальные допуски на исследуемые параметры. Сами параметры называют функциональными параметрами. Насколько высока роль принципа взаимозаменяемости в производстве изделий машиностроения (приборостроения), говорит срок их службы, т. е. повышая степень взаимозаменяемости, можно увеличить срок службы механизмов и приборов.


М. Бабаев читать все книги автора по порядку

М. Бабаев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Приборостроение отзывы

Отзывы читателей о книге Приборостроение, автор: М. Бабаев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.