MyBooks.club
Все категории

Владимир Поляков - Посвящение в радиоэлектронику

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Владимир Поляков - Посвящение в радиоэлектронику. Жанр: Техническая литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Посвящение в радиоэлектронику
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
338
Читать онлайн
Владимир Поляков - Посвящение в радиоэлектронику

Владимир Поляков - Посвящение в радиоэлектронику краткое содержание

Владимир Поляков - Посвящение в радиоэлектронику - описание и краткое содержание, автор Владимир Поляков, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Популярно рассказано об основных достижениях радиоэлектроники — от радиовещания и телевидения до сложных вычислительных комплексов и систем. На многочисленных примерах показана все возрастающая значимость радиоэлектроники в современном мире. Даны сведения о физических основах, принципах действия и устройстве радиоэлектронной аппаратуры и ее элементов.Для широкого круга радиолюбителей.

Посвящение в радиоэлектронику читать онлайн бесплатно

Посвящение в радиоэлектронику - читать книгу онлайн бесплатно, автор Владимир Поляков

Мостовой выпрямитель.


Полупроводниковые диоды легки, компактны и отличаются очень высоким КПД. Область их применения обширна — от детектирования слабых сигналов в радиоприемнике до выпрямления тока при мощностях в сотни киловатт в грузовых электровозах. Теперь на вопрос, поставленный в заголовке раздела, мало-мальски сведущие в электронике люди ответят: «Выпрямить переменный ток? Разумеется, нет ничего проще!».


Триод из… полупроводника?

Инженерам, воспитанным на электровакуумной технике, эта мысль казалась нелепой еще в 50-х годах. Ведь триод — это радиолампа, содержащая катод, анод и управляющую сетку. Потенциал сетки управляет анодным током, и благодаря этому эффекту получают усиление сигналов. Вот как это делается: входное напряжение сигнала прикладывают между сеткой и катодом. Для того чтобы случайные электроны, осевшие на сетке, отправлялись обратно к катоду, включают резистор утечки сетки Rg. В анодную цепь последовательно с источником питания включают резистор нагрузки Ra. Под действием входного напряжения изменяется анодный ток. Каждую лампу характеризуют рядом параметров, в том числе и крутизной характеристики S = ΔIa/Δug - величиной, показывающей, на сколько изменится анодный ток при изменении потенциала сетки на 1 В. Принцип «чем больше, тем лучше» оправдывается и здесь. Обычно стремятся получить максимальную крутизну характеристики в рабочей точке, т. е. при заданных напряжениях на электродах. Анодный ток, проходя через резистор нагрузки, создает на нем некоторое падение напряжения. Его постоянная составляющая обычно не используется, а вот изменения, вызванные изменениями анодного тока, служат полезным выходным сигналом Uвых = ΔIa·Ra. Выразите изменения анодного тока через изменения сеточного напряжения ΔugUвх и подставьте в последнюю формулу.

У вас получится Uвых = S·Ra·Uвх. Произведение S·Ra является коэффициентом усиления лампы по напряжению. Хотя мы получили упрощенную формулу, она дает верное представление о значении коэффициента усиления.

Ну вот, мы посмотрели, как действует усилитель электрических сигналов на электровакуумной лампе. Его коэффициент усиления может достигать нескольких десятков, а иногда и сотен раз.



Усилитель на электровакуумной лампе (триоде).


Как же сделать триод из полупроводника? Эту задачу решили в 1948–1949 годах американские ученые Д. Бардин, В. Братгайн и У. Шокли, за что они были удостоены Нобелевской премии в области физики.

Давайте посмотрим, как им удалось сделать транзистор. Объединим два диода, как показано на рисунке. Область р в середине структуры называется базой, одна из n-областей — эмиттером, а другая — коллектором. Из самих названий ясно, что эмиттер должен что-то излучать, или испускать, а коллектор — это «что-то» собирать.



Структура транзистора n-p-n типа.


Но что можно испускать в полупроводнике? Разумеется, носители заряда — электроны или дырки. Следовательно, на эмиттерный переход надо подать отпирающий потенциал, тогда через этот переход пойдет ток и возникнет движение зарядов. Вот схема включения полупроводникового триода, или транзистора. Транзистор здесь уже изображен так, как его обычно указывают на принципиальных схемах электронных устройств. База (Б) обозначена черточкой, эмиттер (Э) — стрелкой, а коллектор (К) просто наклонной линией, подходящей к базе. Стрелка эмиттера показывает направление тока через эмиттерный переход. Этот ток создается батареей G1. А чтобы он не достигал очень больших значений, ведь сопротивление открытого р-n перехода весьма мало, включен ограничивающий ток резистор . Итак, из эмиттера в толщу полупроводника (хотя какая там толща — толщина базы современных транзисторов измеряется микрометрами!) направляется поток электронов. Все было бы хорошо, если бы электроны, собравшиеся было осесть на базе, не попадали в сильное электрическое поле коллектора, который находится очень близко от эмиттера. На коллектор от батареи G2 подано сравнительно большое напряжение (несколько вольт или даже десятков вольт). Оно приложено в направлении, обратном для коллекторного р-n перехода, поэтому собственного тока через коллекторный переход практически нет. Но есть эмиттерный ток, и электроны, попадая в поле коллектора, направляются к нему и создают ток в коллекторной цепи. У современных транзисторов коллектор «перехватывает» более 99 % всех электронов, излучаемых эмиттером.

Следовательно, «коэффициент перехвата», равный отношению коллекторного тока к эмиттерному, h21б = 0,99 или даже больше. Он называется коэффициентом передачи тока в схеме с общей базой или коэффициентом передачи тока эмиттера. Действительно, в данной схеме включения базовый электрод является общим и для эмиттерной, и для коллекторной цепей. В саму же базу попадает всего 1 — h21б т. е. менее 1 % тока эмиттера. Но вот что важно: и коллекторный, и базовый токи прямо пропорциональны току эмиттера, и если последний прекратится, то прекратится и коллекторный ток. Значит, эмиттерный ток управляет коллекторным! Но где же усиление? В этой схеме усиления по току действительно нет. Тем не менее можно получить усиление по напряжению и по мощности, если в цепь коллектора включить не измерительный прибор (миллиамперметр), как показано на рисунке, а резистор нагрузки с достаточно большим сопротивлением. Тогда изменения коллекторного тока вызовут изменения падения напряжения на нагрузке тем большие, чем больше ее сопротивление.



Включение транзистора по схеме с общей базой.


Но существует и другая, наиболее распространенная схема включения транзистора — с общим эмиттером. Здесь отпирающее напряжение подается на базу. Переход база — эмиттер, как и прежде, отпирается, и эмиттер испускает носители заряда — электроны. Если обозначить ток эмиттера то ток базы составит (1 — h21б)/, а ток коллектора — h21б.



Включение по схеме с общим эмиттером.


Найдем отношение тока коллектора к току базы: ik/ = h21б(1 — h21б). Его значение около 100. Оно называется коэффициентом передачи тока в схеме с общим эмиттером h21э или коэффициентом передачи тока базы. Ток коллектора непосредственно зависит от тока базы: чем больше , тем больше и ik. Тут опять происходит управление большим током коллектора с помощью малого тока базы. Если в цепь базы включить источник сигнала, то такой же сигнал, но уже значительно усиленный, выделится и на резисторе нагрузки в коллекторной цепи. Именно так и устроены простейшие транзисторные усилители сигналов. Никаких накаленных катодов, никаких баллонов, откачанных до глубокого вакуума — транзистор представляет собой крошечный элемент с тремя проволочками-выводами. И напряжения питания требуются небольшие — всего несколько вольт. По массе, габаритным размерам и потребляемой мощности транзистор не идет ни в какое сравнение со своей предшественницей — электронной лампой.

Транзисторы, собственно, открыли возможность микроминиатюризации аппаратуры. С одной стороны, микроминиатюризация, а с другой… Допустим, вы столкнулись с конкретной технической задачей: надо сделать выключатель для очень мощного потребителя тока, скажем лампы прожектора, электродвигателя дрели или станка. Потребляемый ток — несколько ампер. У вас нет выключателя с такими контактами. Что делать? Долгое время подобные задачи решались традиционным способом — использовали электромеханическое реле. Маломощный выключатель замыкает цепь обмотки реле. Обмотка потребляет сравнительно небольшой ток, поэтому и выключатель можно взять маломощный, и провода, ведущие к нему, могут быть длинными и тонкими. Когда ток идет через обмочу, сердечник намагничивается и притягивает якорь, а тот, в свою очередь, замыкает контакты. Все переменилось с разработкой мощных транзисторов. Когда цепь базы разомкнута, ток базы равен нулю, следовательно, отсутствует и ток коллектора. Лампа прожектора Н1 не горит. Замыкая контакты выключателя S1, мы включаем ток базы, и через лампу идет коллекторный ток, заставляя ее гореть. Ток базы может быть в сто раз меньше тока коллектора, и наш маломощный выключатель оказывается вполне пригодным. У транзисторного реле нет обгорающих контактов, нет трудоемкой в изготовлении обмотки, да и вообще нет движущихся элементов.


Владимир Поляков читать все книги автора по порядку

Владимир Поляков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Посвящение в радиоэлектронику отзывы

Отзывы читателей о книге Посвящение в радиоэлектронику, автор: Владимир Поляков. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.