Однако пока эта задача не решена, и космонавтика ограничивается лишь различными теоретическими исследованиями и предварительными проектными разработками термоядерных ракет, показывающими, сколь важна может быть их роль в будущем освоении космического пространства.
Науке известны различные типы термоядерных реакций, которые могли бы найти применение в космических термоядерных ракетных двигателях будущего, например реакции синтеза ядер дейтерия, дейтерия и трития, дейтерия и гелия-3. Считается, что наиболее подходящей для этой цели является последняя реакция, поскольку она не связана с излучением нейтронов и потому не требует особо тяжелой защитной экранировки реактора.
Нагретое до огромных температур рабочее вещество должно вытекать в термоядерном ракетном двигателе из реактора через «горлышко» магнитной бутылки, создавая реактивную струю. В принципе просто, но о конструкции такого двигателя говорить пока рано, хотя на страницах зарубежной печати можно найти различные более или менее детально проработанные проекты подобного рода.
Предварительные исследования показывают, что подобный двигатель должен обладать совершенно уникальными характеристиками: при тяге 180 тонн и массе около 3 тонн (примерно эти параметры характерны для водородно-кислородного двигателя американской системы «Спейс Шаттл») он будет развивать скорость истечения 180 км/с. Заметим для сравнения, что удельный импульс ядерных ракетных двигателей с твердой активной зоной и водородом в качестве рабочего тела не превышает 9000 м/с, а с газообразной (плазменной) активной зоной — 25000 м/с.
Итак, двигатели, созданные на базе термоядерных реакторов, являются принципиально новым шагом на пути развития космических тяговых систем. Эти двигатели позволят человеку, в подлинном смысле слова, стать хозяином Солнечной системы, достигнуть ее самых удаленных планет (Урана, Нептуна, Плутона), совершить полеты за пределы эклиптики, организовать дальние экспедиции в межзвездное пространство, наладить постоянную транспортную связь между планетами земной группы (Марс, Земля, Венера), организовать посещение спутников Юпитера, Сатурна, а главное — перейти к созданию первых тяговых систем, характерных для космических цивилизаций.
Другим способом создания тяги является фотонная ракета. Принцип ее работы довольно прост.
Если на космическом корабле находится мощный источник световых (или каких-либо иных электромагнитных) волн, то, посылая их в одну сторону, можно, как и в случае частиц вещества, создать силу, движущую корабль в другую — противоположную сторону. Эта движущая сила, или тяга, является реакцией фотонов, выбрасываемых источником света на корабле, точно так же как возникает подобная реакция при отражении солнечных лучей «зеркальным парусом».
Ничем не отличалась бы она по существу и от тяги любого реактивного двигателя, за исключением того, что, как указывалось выше, в них реактивная тяга создается вытекающими частицами вещества, а в нашем случае такими же «вытекающими» фотонами.
Этот двигатель отличается от традиционных еще и тем, что скорость «истечения» из него «рабочего вещества» значительно больше. Мало того, это вообще наибольшая возможная скорость «истечения», ибо не существует в природе скорости, большей скорости света. Таким образом, наш фотонный двигатель является как бы идеальным, предельно возможным.
К сожалению, фотонные ракеты могут быть применены только для полетов на очень большие расстояния — например к другим звездам. Их тяга так мала, что только в очень длительном и, следовательно, дальнем полете фотонная ракета может достичь достаточно большой скорости полета.
Понятно, что излучатель фотонного двигателя должен отличаться от обычного прожектора не только размерами.
Установите сколь угодно большой прожектор или сколько угодно много таких прожекторов на космической ракете, и вы не получите нужного результата — тяга такого фотонного двигателя будет ничтожно малой по сравнению с его массой.
Чтобы увеличить тягу, нужно излучать гораздо больше энергии, чем это в состоянии сделать простой прожектор. Ведь энергия, излучаемая раскаленной поверхностью, зависит от температуры поверхности. Но как бы ни была раскалена твердая поверхность, ее температура будет во всех случаях значительно меньше температуры поверхности Солнца (она равна, как известно, примерно 5500 °C).
Лучше подойдут, естественно, раскаленные газовые и в особенности плазменные излучатели (так, Зенгер предложил плазменный излучатель с температурой 150 000 °К). Однако тут возникают другие трудности, помимо связанных с устройством и эксплуатацией высокотемпературных источников излучения. С ростом температуры изменяется (увеличивается) частота излучения, то есть характер излучаемых квантов энергии. Увеличение энергии кванта связано с уменьшением его длины волны (ведь квант — это своеобразная частица, частица-волна), то есть излучение становится все более коротковолновым. Возрастает число квантов ультрафиолетового света и рентгеновского излучения, становящегося все более жестким. Когда температура становится столь большой, что начинают идти ядерные реакции, то появляется и гамма-излучение. Но отражение таких коротковолновых лучей непростая задача: эти лучи, как известно, с легкостью проходят через вещество. Поэтому оказывается необходимым создание принципиально иных «зеркал» вместо обычного рефлектора В частности, для этого предложены такие необычные методы, как использование «электронных» или «плазменных зеркал» в виде стабилизованного плотного облака электронов или плазмы. Известно ведь, что коротковолновые лучи постепенно преломляются и наконец отражаются от электропроводящей среды. Однако чтобы создать такое электронное или плазменное облако, нужны колоссальные давления, наподобие возникающих при атомном взрыве. Должно быть решено немало и других сложнейших проблем.
Так, например, откуда звездолет будет черпать энергию, необходимую для питания фотонного двигателя. Совершенно ясно, что химическая энергия для этого непригодна Но даже в миллионы раз большая энергия деления атомов урана в этом случае также недостаточна С помощью энергии термоядерных реакций можно было бы, пожалуй, осуществить простейший из межзвездных перелетов. Но только полное использование потенциальной энергии вещества в состоянии решить проблему межзвездного полета фотонной ракеты.
Но как можно себе представить высвобождение всей энергии, заключенной в веществе? Известны ли науке методы такого высвобождения?
Есть по крайней мере один такой путь, уже освоенный наукой. Он связан с явлением «аннигиляции» вещества, то есть с процессом столкновения элементарной частицы вещества, например электрона, с ее так называемой античастицей, в данном случае позитроном. При таком столкновении обе частицы «аннигилируют» — исчезают с одновременным выделением энергии, масса которой в точности равна массе исчезнувших частиц. Электрон и позитрон почти во всем одинаковы, за исключением знака электрического заряда, в других случаях частица и античастица различаются и иными свойствами. Предполагается, что может существовать, или действительно существует, вещество (его называют иногда антивеществом), состоящее из античастиц, которое по всем своим физико-химическим свойствам не отличается от обычного вещества.
Выделение энергии в процессах аннигиляции связано с рождением фотонов большей или меньшей энергии. Вот почему идеальным звездолетом была бы аннигиляционная фотонная ракета с полным выделением в ней потенциальной (иногда ее называют «эйнштейновской») энергии вещества.
В такой ракете в фокусе отражателя должен находиться «аннигилятор», в который из двух различных баков поступали бы вещество и антивещество. Образующийся в процессе аннигиляции мощнейший поток фотонов или других электромагнитных квантов, отброшенный назад отражателем, и создавал бы необходимую для полета тягу.
Легко видеть, что в настоящее время речь может идти лишь о теоретической идее фотонной ракеты. Ведь пока еще никто не видел антивещества, неизвестно, как его хранить и подавать в аннигилятор, неизвестно, каким должен быть отражатель фотонов и так далее.
Несмотря на обилие принципиальных неясностей, связанных с реализацией идеи фотонной ракеты, сама эта идея вызывает большой интерес. Это не случайно, ведь такая ракета — идеальное средство для межзвездных перелетов.
Но даже для фотонной ракеты подобный перелет связан с колоссальной затратой «рабочего вещества». Так, для полета продолжительностью 30–40 лет в фотонном двигателе придется «сжечь» в световую энергию примерно 10 миллиардов тонн вещества! Выделившейся при этом энергии хватило бы для расплавления оболочки земного шара на глубину в сотни километров. Не удивительно, что иногда предлагают, чтобы фотонный звездолет, отправляясь в свой далекий путь, захватывал с собой в качестве «топлива» какой-нибудь астероид.