MyBooks.club
Все категории

Виктор Финкель - Портрет трещины

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Виктор Финкель - Портрет трещины. Жанр: Техническая литература издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Портрет трещины
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
14 февраль 2019
Количество просмотров:
70
Читать онлайн
Виктор Финкель - Портрет трещины

Виктор Финкель - Портрет трещины краткое содержание

Виктор Финкель - Портрет трещины - описание и краткое содержание, автор Виктор Финкель, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Разрушение… Мы сталкиваемся с ним ежедневно, ежечасно. Вот слабый стебель травы пророс сквозь асфальт и победно зеленеет. Как это призошло? Вот совершенно неожиданно переломилась мощная металлическая конструкция, которой стоять бы века… Почему? В чем причина катастроф и разрушений, происходящих в мире прочнейших материалов? Как ведет себя микроскопическая трещинка, откуда у нее такая сила и такое коварство? Как человек учится управлять этой страшной силой и обращать ее себе на пользу? На эти и многие другие вопросы отвечает автор. Непринужденная форма изложения, поэтические примеры, подтверждающие мысль автора, делают книгу интересной и познавательной. Книга предназначена для широкого круга читателей, для всех, кто хочет постичь одну из великих загадок природы. И прежде всего она адресована молодежи, стоящей перед выбором профессии.

Портрет трещины читать онлайн бесплатно

Портрет трещины - читать книгу онлайн бесплатно, автор Виктор Финкель

Используют это так. Прежде всего анализируют характер напряженного состояния в конструкции – к какой трещине оно приведет. Есть три вида трещины: нормального разрыва, поперечного сдвига и продольного сдвига. Первая из них возникает, когда разрывают лист бумаги. Чтобы объяснить второй, представьте себе, что два листа металла склепаны. Вы хотите это соединение разделить и молотом ударяете по верхнему слою, срезая заклепку. Дефект в заклепке и есть трещина сдвига. Трещина продольного сдвига образуется, когда, например, бумагу не разрывают, а режут ножницами. Для каждой давно рассчитаны поля напряжений вокруг их вершин (помните: «уши» трещины?). По мере приближения к вершине напряжения быстро растут и достигают предела, после которого материал начинает «течь», то есть пластически деформироваться. Эти условия так и называются пределом текучести. Протяженность области, где это происходит, легко рассчитать; с этого момента реальная длина трещины – это ее подлинная длина плюс размер пластически деформированной зоны. Вот теперь, когда известна и длина трещины, и напря-

жения в ее вершине, и потери энергии на деформирование, можно определить силу, необходимую для продвижения трещины. И конечно, ее легко сравнить с силой из опыта. Но еще важнее введение удивительной характеристики материала – вязкости разрушения. Эта величина, пропорциональная разрушающим напряжениям в вершине трещины, служит своеобразным рубежом прочности скомпрометированного трещиной металла. Ее легко вычислить для трещин различного вида практически в любых металлоконструкциях. Сопоставляя ее с напряжениями, действующими на деталь в том или ином процессе нагружения, заранее можно предсказать: выдержит ли нагрузку конструкция, содержащая трещину, или не выдержит. Все это можно сделать, испытывая не целую ступень космической ракеты, а лишь образец ее материала.

Сегодня – это один из основных методов исследования прочности потому, что любой реальный элемент металлоконструкции содержит множественные дефекты: и трещины, и надрезы, и отверстия, а испытать его целиком (скажем, ферму протяженностью в 50-100 м) физически невозможно. Да, к счастью, теперь и не нужно. Сотни лабораторий во всех странах мира, во всех отраслях машиностроения используют этот метод, хотя еще 20 лет назад казалось, что он не нужен.

Механики оказались правы и подарили цивилизации отличный инструмент для прогнозирования и оценки реальной прочности, который мы условно назовем «первичным диагнозом». Что имеется в виду? Произошла авария. Она может быть грандиозной – развалился корпус танкера в сто тысяч тонн водоизмещением и нефть залила обширный район моря. А может быть и скромной по своим масштабам, например во время больших холодов «разморозились» батареи и некоторые из них взорвались с разлетом осколков (бывает и такое). Специалист-механик, подобно врачу-терапевту, при первичном осмотре «больного», еще не располагая данными анализов, скажет примерно следующее. В первом случае при сварке корпуса танкера была проявлена небрежность, в результате которой швы получились с несплош-ностями. Эти непроверенные места явились концентраторами напряжений. Кроме того, жесткость корпуса танкера оказалась недостаточной и при сравнительно небольшом волнении на море он постоянно прогибался.

Со временем число этих циклов изгиба достигло критического значения – из концентраторов напряжений в сварных швах пошли трещины.

Может быть и иной вариант. При сварке в корпусе оказались законсервированными мощные остаточные напряжения и они «разрядились» на непроваре и т. д. Итак, первичный диагноз носит макроскопический характер и оперирует такими понятиями, как напряжения в конструкции, энергия, запасенная в ней, концентрация напряжений и т. д.

Из древнегреческой легенды мы знаем: когда-то персидский царь Ксеркс, взбешенный тем, что буря разрушила мост через Геллеспонт, приказал высечь море плетьми и заковать его в цепи. Будучи исследователем квалифицированным, современный инженер-механик не потребует наказания для моря, а начнет искать первопричину разрушения. С чего оно началось? Что произошло с атомами? Такие вопросы прежде всего поставит он перед собой. А ответить на них механику помогут другие исследователи – физики.

МЕЧТА И ЯВЬ

Ни с места! Проклятую нить Не разогнешь ни так, ни этак.

Ж. Лафонтен

Мысль человека всегда опережала его возможности. В технике арбитром между фантазией и реальностью, едва ли не всегда, были прочность и материалы. Ими определялся круг всего того, что человек мог сделать сегодня. И это желание прочно стоять на ногах проникло во всех поры человеческого сознания.

«Ножницы» между желаемым и осуществимым, расхождение между тем, что человечество хотело и могло, стали очевидными после удивительной работы выдающегося советкого физика Я. И. Френкеля, вышедшей в 1926 году. Смысл ее таков. Представим себе процесс пластической деформации как соскальзывание одного слоя атомов по другому, подобно тому, как сдвигается стопка листов чистой бумаги или колода карт. Из-за того что процесс этот идет одновременно по всей плоскости листа, мы вынуждены рвать межатомные связи сразу между всеми атомами'по обе стороны плоскости скольжения. Между слоями бумаги силы притяжения ничтожны. Но между слоями атомов они велики. Поэтому попытка сдвинуть два атомных слоя – один по отношению к другому – хотя и возможна, но потребует очень большого усилия. Я. И. Френкель нашел это усилие и пересчитал его на привычные нам напряжения. И тогда оказалось, что прочность в этом случае достигает удивительно больших значений, в 1000 раз превышающих привычные нам, будничные. Эту прочность назвали теоретической прочностью твердого тела и определили ее как потолок, к которому можно и нужно стремиться.

Кто-то сказал, что новая идея – это клин, который входит только толстым концом. Но в случае теоретической прочности все было не так. Мысль Я. И. Френкеля была настолько ясной, а математический аппарат в такой мере простым, чтобы не сказать элементарным, что всему сразу поверили. Научная общественность мира приняла идею «к исполнению» и не ошиблась. Оказалось, в частности, что очень тонкие кристаллы, так называемые усы, толщиной в микроны, обладают прочно-

стями, очень близкими к теоретической. Так, прочность плавленых кремнеземных волокон оказалась равной 4,2 ГПа, усов железа 13 ГПа, а графитовых нитей еще большей 24 ГПа. Сравните эти цифры с прочностью хорошей стали, всего 1-2 ГПа! Кстати, прочность паутины превосходит прочность стальной нити такой же толщины, и при этом паутина еще может растягиваться на 20 %! Неудивительны слова поэта:

И даже тоненькую нить не в состояньи разрубить стальной клинок…

Удивительно другое, почему столетия человечество всего этого не замечало? А ведь оно прекрасно знало о поразительной прочности различных волокон.

Но как практически это было использовано? Никак, если не считать того, что в XVIII веке в Тирольских Альпах паутина оказалась незаменимой… для создания живописных полотен1. Ее натягивали на картон, а затем наносили акварельный рисунок. Прочность материала была такой, что он выдерживал печатание с металлических пластин. Известен и экспонат одного из немецких

1 Бабенко В. Мастер на все ноги. Ткачество//Вокруг света. 1976. № 4. С. 50.

музеев – перчатка из паутины. По словам Ж. Бержье, один безумный немецкий физик в попытке химическим путем воспроизвести нить паука с тем, чтобы соткать из нее пуленепробиваемые жилеты для солдат, уничтожил эту перчатку. Французский естествоиспытатель Г. Ку-пэн сообщает о необыкновенной прочности нити одной из пород мадагаскарского паука: ткань, сотканная из нее, превзошла все ожидания2. Вот и все. Зато сейчас человечество «вошло во вкус» и быстро наверстывает упущенное.

Металлическое волокно «паучий ус» – незаменимый материал для визирных перекрестий оптических инструментов. Из «усов» делают деликатнейшие микроскопические пружины. Из тончайших проволок вьют невероятной прочности канаты. Нити, наконец, основа производства композитных материалов, которые во всем мире широко применяют в военной и гражданской авиации, космонавтике, текстильной промышленности, в больничном и коммерческом оборудовании, в автомобилях, шлюпках, музыкальных инструментах и многом, многом другом – всего и не перечислить… Вот как оценивает американский журнал новый композитный материал на основе графитовых усов тоньше человеческого волоса: в авиации замена алюминиевых деталей композитными облегчит на 15 % конструкцию и позволит военному реактивному самолету… увеличить на 10 % дальность полета или усилить на 30 % свое вооружение при одной и той же заправке горючим. Для гражданских самолетов это означает увеличение дальности полета и полезной нагрузки и, вероятно, более дешевые билеты.


Виктор Финкель читать все книги автора по порядку

Виктор Финкель - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Портрет трещины отзывы

Отзывы читателей о книге Портрет трещины, автор: Виктор Финкель. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.