Из бетонов разных составов с различным содержанием воды изготавливались защитные экраны, которые устанавливались в нише исследовательского реактора, где проводилось измерение распределения в экранах потоков быстрых, резонансных и тепловых нейтронов. Результаты экспериментов были довольно неожиданными: оказалось, что для стационарных ядерных реакторов значительное увеличение содержания воды уменьшает толщину защитного слоя бетона всего лишь на… 10%. В то время как стоимость затрат на введение воды в бетон возрастает значительно больше! То есть оказывается целесообразнее несколько увеличить толщину защиты из обычного бетона, чем повышать процент содержания воды.
Необоснованные требования к повышенному содержанию водорода (воды) в бетонной защите явились причиной того, что во всех известных защитах не допускало нагрев бетона выше 60° C. Хотя с точки зрения прочности и температурных напряжений обычный бетон выдерживает температуры до 250°—300° C, а жаростойкие бетоны — до 1000° C. Для того чтобы исключить разогрев бетонной защиты сверх 60° C за счет поглощения энергии излучения, во всех известных ядерных реакторах перед бетоном возводилась сложная и дорогостоящая тепловая защита из дефицитных материалов: нержавеющей стали, графита, металлических баков, наполненных водой и т. п. Все это помимо удорожания приводило к усложнению конструкции, увеличению габаритов и другим технологическим сложностям.
В 1965 г. В. Б. Дубровский и П. А. Лавданский провели комплексное исследование защитных свойств полностью обезвоженных жаростойких хромитовых бетонов. Экспериментальные данные хорошо совпали с расчетными. Они показали, что в обезвоженном бетоне действительно происходит накопление потоков промежуточных и резонансных нейтронов. Однако увеличение суммарной дозы за счет излучений за защитой сравнительно невелико, и утолщение бетона (по сравнению с такой же водосодержащей защитой) оказывается незначительным. Разогрев бетона происходит только с внутренней стороны на относительно небольшую глубину, основная часть защиты нагреву и высыханию не подвергается. Поэтому ослабление в ней потоков нейтронов низких энергий не уменьшается.
Результаты исследований показали технико-экономическую целесообразность выполнения внутренних слоев защиты из жаростойких бетонов. Кроме того, важны полученные достоверные данные о том, что даже полностью обезвоженный бетон благодаря наличию большого количества легких ядер кислорода обладает удовлетворительными защитными свойствами по ослаблению потоков нейтронов.
Таким образом, можно утверждать, что оптимальное содержание в бетоне водорода (химически связанной воды) должно определяться только экономическими показателями биологической защиты в целом. Бытующие в технической литературе рекомендации по содержанию воды в бетоне необоснованны и преувеличены.
Нужен ли в бетоне бор? В ранних работах (в основном американских), посвященных материалам биологической защиты ядерных реакторов, рекомендовалось использовать материалы, имеющие в своем составе бор. Это объясняется тем, что бор почти в тысячу раз лучше поглощает нейтроны низких энергий, чем большинство других элементов. Это в свою очередь приводит к уменьшению вторичного (захватного) гамма-излучения, образующегося в материалах защиты при поглощении низкоэнергетических нейтронов. Строители же, столкнувшись с необходимостью использовать боросодержащие бетоны и растворы, увидели, что помимо низких физико-механических свойств такие материалы и стоят дороже обычных более чем в 10 раз.
В 1960—1967 гг. инженер П. А. Лавданский провел детальные физические и экономические исследования в этой области. Результаты исследований, подкрепленные экономическими расчетами, показали неэффективность использования боросодержащих строительных материалов при сооружении биологических защит стационарных ядерных реакторов. Применение боросодержащих материалов может быть оправдано только в тех случаях, когда основным требованием к защите являются ее минимальные габариты и вес (например, защита транспортных ядерных установок) или защита работает в условиях радиационного разогрева. Причем и в этих случаях концентрацию бора в материалах не следует принимать более 15 кг/м3, так как увеличение концентрации бора сверх этой величины не дает заметного эффекта в улучшении их защитных свойств.
О засыпной биологической защите. В некоторых проектах и действующих реакторах, пущенных в эксплуатацию в период становления атомной техники, конструктивно защита была выполнена в виде металлических баков, заполненных различными сыпучими материалами (в том числе металлорудными, боросодержащими и гидратными) с оптимальным гранулометрическим составом. Основным доводом в пользу сыпучих материалов считалась возможность демонтажа такой защиты в процессе эксплуатации. Этот довод не убедителен, так как засыпка активируется, и до настоящего времени я не знаю примеров демонтажа существующих засыпных защит.
Начиная с 1964 г. работники нашей кафедры В. Б. Дубровский, П. А. Лавданский и В. Н. Леденев совместно с Институтом атомной энергии им. И. В. Курчатова проводили экспериментальные и теоретические исследования эффективности засыпных материалов в конструкциях защит от излучений. Результаты показали, что при прочих равных условиях засыпные защиты (рассматривалось восемь наиболее распространенных и перспективных материалов) в два — четыре раза дороже защиты из обычного бетона. А значит, как правило, и нецелесообразны.
Неоднородность бетонной защиты от гамма-излучении. Эффективность биологической защиты из бетона зависит не только от вида составляющих бетонной смеси, но и от равномерности распределения основных компонентов: заполнителя и цементного теста. Чем выше объемный вес применяемых заполнителей, тем больше опасность расслоения бетона и получения неоднородного защитного экрана. Свежеприготовленная бетонная смесь достаточно однородна. Однако при сотрясении и вибрации в процессе транспортировки и укладки в конструкцию она обладает способностью расслаиваться. При этом в бетонном массиве могут образоваться локальные неоднородности в виде каверн или прослоек из цементного теста с объемным весом, меньшим расчетного объемного веса бетона.
Опасения проектировщиков по поводу таких неоднородностей привели к выработке целого ряда повышенных требований к укладке бетонной смеси. Были разработаны специальные технические мероприятия при производстве работ: дополнительное вытапливание в поверхностный слой бетонной смеси крупного заполнителя, организация оперативного контроля за объемным весом уложенного бетона с помощью изотопных и ультразвуковых установок. Нередко применяются и методы раздельной укладки бетона.
Неясность в вопросах прохождения излучений через менее плотные прослойки в бетонной защите долгое время сдерживала применение более индустриальных сборных экранов из блоков на растворе. Если и применялись сборные элементы, то со сложными сопряжениями или увеличенной до 20% толщиной защиты.
Аспиранты кафедры А. Ф. Миренков и В. Н. Соловьев исследовали прохождение гамма-излучения через неоднородные защиты из бетонов. В экспериментальных исследованиях использовались мощные кобальтовые источники активностью 500, 6000 и 43 500 гр. экв. радия. За экранами из бетонных блоков, уложенных на растворе, определялся прострел излучения по швам шириной от 1 до 3 см. Исследования показали, что для реальной толщины защиты из обычного бетона превышение дозы излучения по швам (или зонам расслоения бетона в монолитной защите) практически не снижает эффективности защиты. Поэтому не стоит предъявлять специальные требования к укладке обычного бетона в защитные конструкции, к изготовлению сборных элементов и их сопряжений, а тем более увеличивать толщину сборной защиты.
Биологическая защита ускорителей. С 1963 г. на кафедре были начаты исследования защитных свойств строительных материалов от проникающей радиации высокой и сверхвысокой энергий, источником которой является ускоритель элементарных частиц. Надо сказать, что в СССР к этому времени были введены в эксплуатацию два мощных ускорителя протонов в Объединенном институте ядерных исследований в Дубне. Благодаря этому исследователи получили экспериментальную базу, необходимую для проведения опытов по радиационной защите в реальных условиях.
Исследования проводились аспирантами кафедры В. В. Мальковым и О. А. Улитиным. Первый исследовал материалы и конструкции защиты от наиболее жесткого излучения ускорителя. Такое излучение генерируется на мишенях, камере ускорителя, транспортных каналах и обычно называется прямым излучением. О. А. Улитин занимался мягким спектром излучений ускорителей, формирующимся в результате многократного рассеяния прямого излучения на поверхностях ограждающих стен и перекрытий, а также на элементах технологического оборудования и поэтому получившим название рассеянного излучения.