MyBooks.club
Все категории

Владимир Поляков - Посвящение в радиоэлектронику

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Владимир Поляков - Посвящение в радиоэлектронику. Жанр: Техническая литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Посвящение в радиоэлектронику
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
338
Читать онлайн
Владимир Поляков - Посвящение в радиоэлектронику

Владимир Поляков - Посвящение в радиоэлектронику краткое содержание

Владимир Поляков - Посвящение в радиоэлектронику - описание и краткое содержание, автор Владимир Поляков, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Популярно рассказано об основных достижениях радиоэлектроники — от радиовещания и телевидения до сложных вычислительных комплексов и систем. На многочисленных примерах показана все возрастающая значимость радиоэлектроники в современном мире. Даны сведения о физических основах, принципах действия и устройстве радиоэлектронной аппаратуры и ее элементов.Для широкого круга радиолюбителей.

Посвящение в радиоэлектронику читать онлайн бесплатно

Посвящение в радиоэлектронику - читать книгу онлайн бесплатно, автор Владимир Поляков

Система с параллельной передачей элементов изображения.



Фототелеграф.


Не будем далее останавливаться на технике фототелеграфа, отметим главное: чтобы передать изображение, надо его «развернуть», «разложить» на элементы. Чем мельче элементы, тем четче воспроизводится изображение. Давайте снимем с фототелеграфной аппарата лист с изображением и положим его на стол, на плоскость.

Это переданный «кадр». На нем видны «строки» — следы поля зрения фотоэлемента в передатчике и пера в приемнике. Штриховыми линиями показан «обратный ход». В фототелеграфном аппарате его нет, поскольку изображение свернуто в цилиндр. А если мы xoтим передавать плоское изображение, обратный ход обязательно будет. Итак, первый принцип, лежащий в основе телевидения, — принцип развертки — нам ясен. Обратимся теперь ко второму принципу и назовем его условно «принципом кино».



Фототелеграфные сигналы.



Развертка плоского изображения.


А как передать движущееся изображение?

Братья Люмьер, изобретатели кинематографа, вряд ли могли представить себе бурное развитие своего детища в нашем веке. И тем более трудно было представить, что у кино появится очень сильный конкурент — телевидение.

Принцип кино состоит в частой смене изображений. Экран в кинотеатре вспыхивает 48 раз в секунду благодаря обтюратору (затвору), открывающему световой поток, и столько же раз гаснет. Во время каждых двух вспышек с кинопленки проецируется один кадр изображения. Человеческий глаз не способен заметить эти мелькания — время его реакции на свет составляет около 0,1 с, поэтому максимальная частота мерцаний, еще замечаемых глазом, не превосходит 10…12 Гц. Каждый последующий кадр воспроизводит ту же сцену, но движущиеся предметы на нем уже слегка переместились. Эти небольшие перемещения при быстрой смене кадров и воспринимаются как непрерывное движение. Теперь становится ясно, как можно передать на расстояние движущееся изображение.

Надо передавать не менее 10…12 кадров в секунду (принцип кино). Но каждый кадр надо еще преобразовать в последовательность сигналов, соответствующих элементам изображения (принцип развертки).

Именно таким путем и шли первые изобретатели телевидения, и принципы, заложенные ими, сохранились до настоящего времени. Изменилась только техника передачи и приема движущихся изображений. В первых опытах использовали механическую развертку изображения. Вот, например, диск П. Нипкова — немецкого инженера, получившего в 1884 году в Германии патент на «оптико-механическое устройство». В диске по спирали Архимеда просверлен ряд отверстии. Диаметр отверстий соответствует размеру элемента изображения. А само изображение сцены проецируется объективом на верхнюю часть диска с ограничительной рамкой. Ширина кадра соответствует расстоянию между соседними отверстиями, а высота — шагу спирали. Кадр, ограниченный рамкой, изображен в верхней части диска. Строки в этом кадре горизонтальны, как и в современном телевидении, но применялись системы и с вертикальными строками. Рамка в этом случае располагалась на боковой стороне диска, как показано на рисунке штриховыми линиями. Если диск быстро вращать, то первое отверстие прочерчивает первую строку, и, когда оно выходит за кадр, второе отверстие развертывает другую строку, и так далее, пока не будет развернут весь кадр.



Диск Нипкова.


Теперь посмотрим, как устроена система механического телевидения 30-х годов. Объектив проецирует изображение сцены на рамку и вращающийся позади нее диск, а за диском установлен фотоэлемент. Ток фотоэлемента пропорционален освещенности данного элемента изображения, и на выходе фотоэлемента при развертке появляется так называемый видеосигнал, напряжение которого пропорционально освещенности.

Развертка изображения осуществлялась всего на 30 строк. Столько же отверстий было и в диске Нипкова. Строка содержала 40 элементов. Следовательно, изображение кадра разбивалось всего на 1200 элементов. Видеосигнал модулировал несущую телевизионной станции по амплитуде и излучался в эфир. В приемнике, выполненном так же, как и радиовещательный, сигнал усиливался и детектировался. Продетектированный видеосигнал (он точно такой же, как и после фотоэлемента в передатчике) поступал на неоновую лампу с плоским катодом, освещавшую экран, за которым вращался точно такой же диск Нипкова. Вращение дисков на радиостанции и в приемнике строго синхронизировалось. С этой целью в паузах между кадрами передавались синхронизирующие импульсы, управляющие вращением мотора в приемнике.

Впечатление от первых телевизионных опытов было огромным. Представьте себе большой корпус (ящик, как тогда говорили) с экранчиком величиной со спичечную коробку. Включили. Взревел мотор, набирая обороты, гудение стало выше тоном, и вот уже, набрав номинальные обороты, высоко запел мотор и зашелестел быстро вращающийся диск. Вы с волнением прильнули глазом к оранжевому окошечку — экрану. Сначала вы ничего не различаете, кроме мелькающих полос: это мотор еще не вошел в синхронизм — в ряде приемников синхронизма добивались вручную, нажимая пальцем на вращающийся диск сквозь специальное окошко в корпусе.

Затем движение полос замедляется, останавливается и вы различаете какую-то смутную тень — человека! Он шагнул, поднял руку. Вы все видите. Это ли не чудо?! Вероятно, так и воспринимались первые телевизионные передачи из Москвы в конце 30-х годов. Вы удивитесь, вероятно, если узнаете, что велись они на длинных волнах и принимать телепередачи можно было за многие сотни, а то и тысячи километров. «Но как же это возможно?» — спросите вы. Чтобы ответить на вопрос, почему возможно длинноволновое телевидение и почему его теперь нет, давайте немного посчитаем. Ничего, кроме знания арифметики и тех начал теории информации, о которых вы уже читали в этой книге, нам не потребуется.


Немного арифметики

Итак, мы передаем 30 строк изображения в одном кадре и по 40 элементов изображения в каждой строке. Всего в кадре 1200 элементов. Чтобы картинка не мелькала, будем передавать, как это делалось в малострочной электромеханической системе телевидения, 12,5 кадров в секунду. Итого получается 1200·12,5 = 15000 элементов изображения в секунду. Какова же при этом частота видеосигнала? Она максимальна при передаче изображения, состоящего из 20 черных и 20 белых вертикальных полос, чередующихся между собой.

При развертке такого изображения получается видеосигнал в виде меандра (прямоугольных колебаний) с частотой 7500 Гц. Воспроизводить крутые фронты такого сигнала нет необходимости: все равно круглое отверстие диска Нипкова, пробегая мимо полосы изображения, смажет края. Значит, достаточно передать только основную частоту такого видеосигнала 7,5 кГц. Такая же высокая частота видеосигнала получается и при передаче изображения «шахматной» доски, содержащей 600 белых и столько же черных квадратов. Все другие изображения дадут видеосигнал, изменяющийся медленнее, а следовательно, и содержащий меньшие частоты.

Итак, надо передать спектр видеосигнала шириной 7,5 кГц. Но это же звуковой спектр! И любая радиовещательная станция пригодна для передачи телевизионных изображений. Другое дело, что четкость этих изображений никакой критики не выдерживает, даже диктора узнать нельзя! Чтобы повысить четкость, надо перейти к электронному телевидению. По современному отечественному стандарту кадр развертывается 625 строками по 820 элементов в строке (ширина кадра составляет четыре третьих его высоты). За одну секунду передается 25 кадров. Видеосигнал займет спектр шириной почти 6,5 МГц. Для его передачи не хватило бы ДВ, СВ и половины КВ диапазона, вместе взятых. Поэтому современные телецентры ведут передачи только на УКВ, где еще есть запас по частоте.

Осваивается диапазон дециметровых волн (ДМВ), а в недалеком будущем ожидается переход и на сантиметровые волны, но последнее уже связано с непосредственным телевизионным вещанием со спутников Земли.



Сцены, дающие максимальную частоту видеосигнала.


Электронно-лучевая трубка

С удовольствием просматривая мультфильм «Ну, погоди!», вы вряд ли задумывались о том, как устроен телевизор, а тем более передающий телецентр.

Рождение электронного телевидения началось с изобретения электронно-лучевой трубки (ЭЛТ). Она и явилась тем «волшебным зеркальцем», которое, как в сказке, показывает нам весь мир. Основные идеи, заложенные в конструкции ЭЛТ, сформулировал еще в 1907 году профессор Петербургского университета Б. Л. Розинг. Однако лишь в 30-х годах появились приемные трубки — кинескопы — с магнитной фокусировкой луча, дававшие удовлетворительную четкость изображения. Первые передачи электронного телевидения начались в нашей стране с октября 1938 года. Изображение развертывалось на 243 строки при 25 кадрах в секунду, что давало намного более четкое изображение по сравнению с электромеханической системой, которая, кстати, еще функционировала.


Владимир Поляков читать все книги автора по порядку

Владимир Поляков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Посвящение в радиоэлектронику отзывы

Отзывы читателей о книге Посвящение в радиоэлектронику, автор: Владимир Поляков. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.