В таблице 8.2 приведено количество полей, записываемых каждую секунду при различных установках TL-режима для обеих основных телевизионных систем NTSC и PAL. Время обновления представляет временной интервал между полями в последовательности.
9. Цифровое видеонаблюдение
До сих пор большинство обсуждаемых в этой книге вопросов относилось к аналоговым видеосигналам. Большинство современных систем видеонаблюдения по-прежнему используют аналоговые телекамеры, хотя все большее число производителей предлагают сетевые телекамеры, которые предназначены для передачи видео по компьютерным сетям. Всего несколько лет назад к тем немногим компонентам систем видеонаблюдения, которые работали с цифровым видео, относились устройства видеопамяти, видеоквадраторы, видеомультиплексоры, внутренние схемы телекамер с цифровой обработкой видеосигналов (Digital Video Processing — DSP). Но ситуация изменилась.
Сейчас мы с уверенностью можем сказать, что в большинстве современных систем видеонаблюдения, хотя они по-прежнему работают с аналоговыми телекамерами, используются цифровые видеорегистраторы для наблюдения и долгосрочного хранения записей. Качество телекамеры всегда остается отправной точкой, от которой мы отсчитываем качество системы видеонаблюдения, но теперь равным образом стали важны и качество записанного цифрового изображения, и качество обработки этого изображения.
В период между настоящим и первым изданиями этой книги (с 1996 года по 2005 год) произошли революционные сдвиги в таких сферах, как телевидение, мультимедийные приложения, фотография и видеонаблюдение. Основная часть новых разработок связана с цифровой технологией. Одним из локомотивов подлинного бума в индустрии видеонаблюдения стал переход к цифровой обработке, передаче и хранению видеоинформации. Этот «локомотив» набрал ход только недавно, что и послужило причиной выхода полностью нового издания этой книги, где мы подробно обсудим вопросы, связанные с цифровыми и сетевыми технологиями и сжатием изображения.
Всего лишь несколько лет назад стоимость производительной цифровой электроники, способной обрабатывать видео в режиме реального времени, была слишком высокой и экономически неоправданной. Но в настоящее время с постоянным увеличением производительности и скорости микросхем памяти, процессоров и жестких дисков происходит постоянное уменьшение их стоимости.
Таким образом, цифровая обработка видеосигналов оказалась не только возможной и более доступной, но фактически стала единственной альтернативой при обработке большого количества качественных видеосигналов.
Цифровое видео проникло в индустрию вещательного телевидения в начале 1990-х годов. Подобно любой новой технологии, на первых порах использовалось очень редко и стоило дорого. Сегодня мы говорим о цифровом видео как о новом стандарте, который пришел на смену аналоговому телевидению почти 50-летней давности. Существует два варианта: телевидение стандартной четкости (SDTV, Standard Definition), у которого соотношение сторон 4:3 и привычное качество, и телевидение высокой четкости (HDTV, High Definition) с соотношением сторон 16:9 и примерно в 5 раз большим количеством пикселов. Во многих странах мира уже ведется телевизионное вещание в цифровой форме, обычно в том и другом формате (SDTV и HDTV). Неудивительно, что большинство потребителей предпочитают стандарт HDTV, у которого выше разрешение и соотношение сторон, характерное для широкоформатного экрана кинотеатра, но так как в видеонаблюдении мы имеем дело со стандартным разрешением, то в этой мы рассмотрим все основные вопросы, связанные с цифровым видео стандартного разрешения с соотношением сторон 4:3.
Цифровые видеорегистраторы (DVR) и сетевые телекамеры стали причиной нового роста в индустрии видеонаблюдения, источником больших прибылей и новых идей решений в разработке интеллектуальных систем видеонаблюдения. Они сделали очень зыбкой и практически невидимой ту границу, которая отделяет компьютеры, сетевые и информационные технологии от видеонаблюдения.
Преимущества цифрового видеонаблюдения
По определению аналоговые сигналы могут иметь любое значение в заданном диапазоне. Примером такового аналогового сигнала может служить как аудиосигнал, так и видеосигнал. Как мы знаем, заданным диапазоном для аналогового видеосигнала является интервал от 0 вольт, что соответствует черному, до 0.7 вольт, что соответствует белому.
Как уже говорилось ранее, большинство телекамер, используемых сейчас в видеонаблюдении, формируют аналоговые сигналы. Однако основная проблема, с которой мы сталкиваемся при работе с аналоговыми сигналами, заключается в том, что в них возникает и накапливается шум, и, как читатели, вероятно, знают из собственного опыта, в реальных условиях от этого шума избавиться невозможно. Он накапливается на каждом этапе формирования, передачи и обработки видеосигнала.
Возникая еще в матрице и электронике телекамеры на начальном этапе формирования сигнала, шум увеличивается как при передаче (в кабеле), так и на завершающем этапе (в видеомониторах и устройствах записи и т. д.). Чем длиннее путь видеосигнала, тем больше шума мы получим в конце этого пути.
Именно в этом проявляется существенное отличие цифрового сигнала. Так, одним из наиболее принципиальных различий между аналоговым и цифровым сигналом, кроме непосредственно формы, является иммунитет к шумам. Цифровой сигнал в электронной форме также подвержен воздействию шума, как и аналоговый. Но цифровые сигналы могут иметь только два значения: нуль и единицу. Шум будет воздействовать на сигнал только в том случае, если его величина достигнет уровней, которые могут превзойти помехоустойчивость цифровых схем, определяющих равенство сигнала нулю или единице. Это означает, что цифровые сигналы допускают аккумуляцию шума до невообразимого уровня по сравнению с аналоговыми видеосигналами, поэтому мы говорим, что цифровые сигналы фактически имеют иммунитет к шумам. (Можно также отметить, что уровням «нуль» и «единица» в цифровых электронных устройствах соответствуют режимы отсечки или насыщения активных элементов, а в этих режимах усиление наводок невозможно. Прим. ред.)
В конечном итоге, это дает более протяженные расстояния для передачи, высокую помехозащищенность и отсутствие деградации сигнала, то есть более высокое качество изображения.
Другое важное преимущество цифрового видеосигнала — это возможность цифровой обработки и хранения информации. Под этим подразумевается улучшение изображения, его сжатие, различные коррекции и т. д. Крайне существенным является то, что копия и оригинал ничем не отличаются по качеству изображения. Сколько бы копий цифрового изображения мы ни делали (1,2 или 10), качество всегда будет оставаться таким же, как у оригинала. И последним (не по степени важности) преимуществом цифрового видео является возможность проверки подлинности копии. Эта функция часто называется нанесением «водяных знаков» (water-mark) и позволяет защитить информацию, записанную в цифровой форме от подделки, что крайне важно для индустрии видеонаблюдения.
Рис. 9.2. Представление цифрового видеосигнала
Цифровые видеорегистраторы (DVR)
В настоящее время в видеонаблюдении эпоха записи на видеокассеты практически завершилась. Пять лет назад при подготовке предыдущего издания книги, видеомагнитофоны еще встречались в большом количестве, а цифровые видеорегистраторы только начинали появляться. Сейчас они поменялись местами. Но какие реальные преимущества дают в видеонаблюдении цифровые видеорегистраторы по сравнению с видеомагнитофонами?
Во-первых, видеомагнитофоны с аналоговым методом хранения информации не позволяют быстро найти нужную запись от нужной телекамеры, исключение составляет относительно быстрый поиск по тревогам, который имеется во многих TL-видеомагнитофонах. Так как видеомагнитофоны хранят информацию в аналоговом виде, то ее дальнейшая обработка практически невозможна. Запись видеомагнитофона всегда имеет более низкое качество, чем у исходного видеосигнала.
Первоначально были попытки внедрить цифровую запись в видеонаблюдении на цифровых кассетах формата DAT. Несмотря на то, что информация записывалась в цифровом виде, доступ к ней по-прежнему осуществлялся последовательно, что не так эффективно, как при произвольном доступе к информации жесткого диска. Кроме того, жесткие диски имеют значительно более высокую скорость передачи данных и большую емкость, чем у других доступных устройств хранения. При этом можно записывать видео с качеством выше, чем S-VHS, используя соответствующие алгоритмы сжатия. Еще несколько лет назад существовала проблема длительности записи на жесткие диски, но это уже осталось в прошлом. Сейчас широко распространены жесткие диски объемом 300 Гбайт, а цифровые видеорегистраторы с объемом внутреннего дискового пространства 1200 Гбайт (1.2 Тбайт) перестали быть редкостью.