Это тоже был аккумулятор – гидрогазовый, то есть состоящий из жидкости – масла – и газа. Но наряду с преимуществами перед чисто воздушным аккумулятором он имел и свои недостатки.
Главный недостаток – требовалось много масла. Чем более емкий аккумулятор мы хотим сделать, тем больше в нем должно быть сжатого воздуха. Масла, естественно, понадобится столько же, сколько и воздуха, не меньше. И еще – проходя через гидромашину, масло свободно стекает в бак – тяжелый, громоздкий, тем большего размера, чем больше масла. Если учесть, что здесь используется не один, а сразу несколько баллонов со сжатым воздухом и маслом, то можно себе представить, как это все увеличит размеры и массу аккумулятора!
Нет, размышлял я, так дело не пойдет. Куда мне такая громадина? Один только бак чего стоит… А нельзя ли обойтись совсем без него?
Половину баллона сначала занимает сжатый газ, вторую половину – масло. Попробуем сузить баллон посередине, между жидкостью и газом, поставив там запорный клапан. Изменим таким же образом и другие баллоны аккумулятора. Теперь сделаем вот что: пусть масло находится в нижней половине первого баллона, сжатый газ – в верхней. В остальных баллонах оставим сжатый газ только в верхних половинах, нижние оставим пустыми, а запорные клапаны перекроем. Причем последний баллон выполним только из нижней половинки.
Итак, весь газ сжат, энергия в нем накоплена – все готово к совершению работы. Сможет ли аккумулятор работать без бака?
Гидрогазовый аккумулятор без бака
Открываем запорный клапан первого баллона и выпускаем масло под давлением в гидромашину. Но после гидромашины направляем масло уже не в бак – его ведь нет, – а в пустую нижнюю половину следующего баллона. Когда он заполнится, открываем запорный клапан этого баллона, и масло, отработав в гидромашине, поступает в третий баллон. И так далее, при любом количестве баллонов, при любой емкости аккумулятора. В конце работы остается только заполненная маслом нижняя половинка последнего баллона. Все в порядке, энергия выделяется!
Зарядка аккумулятора должна происходить в обратной последовательности. Мы крутим гидромашину, и масло своим давлением поочередно сжимает газ в баллонах, переходя из одного в другой, при этом предыдущий баллон используется в качестве бака. Аккумулятор заряжен!
Это была уже действительно победа! Использовать в аккумуляторе огромной емкости постоянный небольшой объем масла и обойтись совсем без бака – раньше это казалось мне просто фантастичным.
Чтобы проверить правильность своих расчетов, я обратился к специалистам-гидравликам. И тут я по-настоящему оценил народную поговорку: «ум хорошо, а два лучше». Специалисты многое поправили в моей схеме, нашли такие «тонкости», о которых я и не подозревал. Разработанные нами впоследствии устройства были признаны изобретениями.
И все же полного удовлетворения у меня не было. Пристально изучая воздушный аккумулятор, я убедился, что при сильном сжатии многие газы просто-напросто сжижаются, и дальнейшее сжатие, если оно даже возможно, уже не дает желаемого эффекта.
Оказалось также, что нельзя закачивать газ под очень большим давлением в один баллон – не выдержит, разрушится стенка баллона, даже если она сделана из толстой стали. Надо помещать один в другой несколько баллонов, постепенно повышая давление от внешних к внутренним. Однако полноценным аккумулятором станет только внутренний, самый малый баллон, где наиболее высокое давление. Остальные будут практически балластом.
Значит, повышать давление более 40—50 МПа для аккумулирования энергии в сжатом газе невыгодно, то есть энергетический «потолок» здесь невысок. И хотя такие аккумуляторы в общем-то нужны и полезны, моей «капсулы» тут не найти.
Время шло, а «энергетическая капсула» продолжала пока оставаться мечтой.
«Капсула» начинает теплеть, но с появлением загадочного «демона Максвелла» автор всерьез усомнился в правильности избранного пути…
Несмотря на то что с газовыми аккумуляторами решено было покончить, забыть я их никак не мог. Не давало покоя тепло – энергия, пропадающая при остывании горячего баллона после его закачки воздухом. Вернее, не пропадающая, а переходящая в окружающую атмосферу, но от этого не легче.
Хорошо, размышлял я, пусть газ при сжатии сильно нагревается, однако неужели нельзя спасти это тепло, не дать ему рассеяться? Тогда энергию сжатого газа можно было бы использовать не тотчас же после сжатия, а когда угодно.
Есть, конечно, целый ряд способов, позволяющих уберечь тепло от рассеивания. Еще наши предки, желая подольше сохранить горячим заварочный чайник на самоваре, накрывали его ватной «бабой». Кастрюлю с кашей с той же целью убирали под подушку. Да и мало ли еще примеров «укутывания» для сохранения тепла!
Но лучший способ сберечь тепло – это воспользоваться термосом. Я всегда удивлялся способности этого прибора долго, целый день, удерживать чай горячим. Пробовал разобраться – как устроен термос, что у него внутри.
Однажды, сняв крышку, я вынул из корпуса сверкающую зеркальную бутылочку с торчащим хвостиком внизу. Так как больше ничего особенного я не обнаружил и загадка термоса не была разгадана, я с замиранием сердца обломил кончик хвостика, надеясь заглянуть внутрь, под зеркальный слой. Послышался резкий свист воздуха, и все стихло. Посмотрев в крошечное отверстие бутылочки, я понял, что обманулся – ничего там не было.
Я поспешно вставил испорченный сосуд обратно в корпус и завинтил крышку. Внешне термос оставался тем же, а тепла, увы, уже не удерживал. Кипяток в нем, правда, остывал не так быстро, как, например, в чайнике, но и не так медленно, как раньше. Термос посчитали негодным и выбросили.
А я, заглянув в энциклопедию, нашел там статью про термос и выяснил его устройство. Оказывается, зеркальная бутылочка была не цельная, а состояла из двух стеклянных колб, вставленных одна в другую и позеркаленных особым способом. В пространство между ними заливают специальный раствор, содержащий соли серебра, и колбы нагревают. Стенки колб при этом покрываются тончайшей серебряной пленкой. Затем раствор выливают, воздух из этого пространства тщательно откачивают и отверстие запаивают. Вот и остается после него тоненький стеклянный хвостик, который я обломил…
Для чего же все это делается? Если мы нальем в термос горячую жидкость и заткнем его пробкой, то куда денется тепло? Окружающий воздух не нагреется – тепло не пройдет через безвоздушную прослойку между колбами. Излучиться в пространство, как излучается оно Солнцем или раскаленным металлом, тепло тоже не сможет – зеркальный слой отразит тепловые лучи, как свет, снова внутрь колбы. А внешняя колба позеркалена для того, чтобы тепловые и солнечные лучи снаружи не попали внутрь и не нагрели термос, особенно когда в нем находится холодная вода или мороженое. Поэтому термос одинаково хорошо сохраняет первоначальную температуру как холодных, так и горячих тел. Говорят, что он теплоизолирует их от окружающей среды. Тепло может «утечь» или «притечь» только через тоненькую «шейку», соединяющую обе колбы, или через пробку. А пробка очень плохо передает тепло.
Здесь следует заметить, что воздух между колбами должен быть откачан до очень высокого, почти «космического» вакуума. Если там остается даже ничтожное количество воздуха, даже его тысячная доля, то эффект термоса исчезает. Хоть молекул и становится намного меньше, но и длина их пробега увеличивается, а теплопроводность почти не падает! Вот такова эта удивительная физика!
Изобрел этот хитрый сосуд в самом конце позапрошлого века английский ученый Джеймс Дьюар; в его честь термос и другие сосуды, поддерживающие постоянную температуру, называют еще сосудами Дьюара. Вот куда бы надо помещать сжатый газ, чтобы он не охлаждался, а сохранял свое тепло подольше. Но сосуд Дьюара, рассчитанный на огромные давления аккумулятора, станет тогда очень сложным и дорогим; как говорится, игра здесь просто не стоит свеч.
«Сосуд Дьюара» – термос
Зачем же вообще помещать туда газ, да еще сжатый? Ведь значительно большее количество энергии можно накопить в заранее нагретых телах помассивнее, чем газ, например в жидкостях, – их и сжимать для этого не надо. Тогда давление нам уже не помешает, и сосуд Дьюара будет иметь свой обычный вид.
Килограмм сжатого до 50 МПа газа, как я подсчитал, может накопить 50 кДж энергии, в то время как литр воды, соответствующий по массе тому же килограмму, при нагревании всего на один градус уже накапливает одну большую калорию тепла, которая равна 4,2 кДж механической энергии. Если же нагревать литр воды от 0 до 100 °C, то в воде будет в восемь раз больше накопленной энергии, чем в килограмме сжатого до 50 МПа газа.