MyBooks.club
Все категории

М. Бабаев - Гидравлика

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая М. Бабаев - Гидравлика. Жанр: Техническая литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Гидравлика
Автор
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
148
Читать онлайн
М. Бабаев - Гидравлика

М. Бабаев - Гидравлика краткое содержание

М. Бабаев - Гидравлика - описание и краткое содержание, автор М. Бабаев, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Введите сюда краткую аннотацию

Гидравлика читать онлайн бесплатно

Гидравлика - читать книгу онлайн бесплатно, автор М. Бабаев

Гидродинамический напор Н состоит из следующих разновидностей напоров, которые входят в формулу (198) как слагаемые:

1) пьезометрический напор, если в (198) p = pизг, или гидростатический, если p ≠ pизг;

2) U2/2g – скоростной напор.

Все слагаемые имеют линейную размерность, их можно считать высотами. Назовем эти высоты:

1) z – геометрическая высота, или высота по положению;

2) p/ρg – высота, соответствующая давлению p;

3) U2/2g – скоростная высота, соответствующая скорости.

Геометрическое место концов высоты Н соответствует некоторой горизонтальной линии, которую принято называть напорной линией или линией удельной энергии.

Точно так же (по аналогии) геометрические места концов пьезометрического напора принято называть пьезометрической линией. Напорная и пьезометрическая линии расположены друг от друга на расстоянии (высоте) pатм/ρg, поскольку p = pизг + pат, т. е.

Отметим, что горизонтальная плоскость, содержащая напорную линию и находящаяся над плоскостью сравнения, называется напорной плоскостью. Характеристику плоскости при разных движениях называют пьезометрическим уклоном Jп, который показывает, как изменяется на единице длины пьезометрический напор (или пьезометрическая линия):


Пьезометрический уклон считается положительным, если он по течению струйки (или потока) уменьшается, отсюда и знак минус в формуле (3) перед дифференциалом. Чтобы Jп остался положительным, должно выполняться условие

31. Уравнения движения вязкой жидкости

Для получения уравнения движения вязкой жидкости рассмотрим такой же объем жидкости dV = dxdydz, который принадлежит вязкой жидкости (рис. 1).

Грани этого объема обозначим как 1, 2, 3, 4, 5, 6.


Рис. 1. Силы, действующие на элементарный объем вязкой жидкости в потоке

Будем считать, что для любой точки жидкости

τxy= τyx; τxz= τzx; τyz= τzy. (1)

Тогда из шести касательных напряжений остается только три, поскольку попарно они равны. Поэтому для описания движения вязкой жидкости оказываются достаточными всего шесть независимых компонентов:

pxx, pyy, pzz, τxy(или τyx), τxz(τzx), τyz(τzy).



Аналогичное уравнение легко можно получить для осей OY и OZ; объединив все три уравнения в систему, получим (предварительно разделив на ρ)


Полученную систему называют уравнением движения вязкой жидкости в напряжениях.

32. Деформация в движущейся вязкой жидкости

В вязкой жидкости имеются силы трения, в силу этого при движении один слой тормозит другой. В итоге возникает сжатие, деформация жидкости. Из-за этого свойства жидкость и называют вязкой.

Если вспомнить из механики закон Гука, то по нему напряжение, которое возникает в твердом теле, пропорционально соответствующей относительной деформации. Для вязкой жидкости относительную деформацию заменяет скорость деформации. Речь идет об угловой скорости деформации частицы жидкости dΘ/dt, которую поодругому называют скоростью деформации сдвига. Еще Исааком Ньютоном установлена закономерность о пропорциональности силы внутреннего трения, площади соприкосновения слоев и относительной скорости слоев. Также им был установлен

коэффициент пропорциональности динамической вязкости жидкости.

Если выразить касательное напряжение через его компоненты, то

А что касается нормальных напряжений (τ —это касательная составляющая деформации), которые зависимы от направления действия, то они зависят также от того, к какой площади они приложены. Это их свойство называют инвариантностью.

Сумма значений нормальных напряжений


Чтобы окончательно установить зависимость между pudΘ/dt через зависимость между нормальными

(pxx,pyy, pzz) и касательными (τxy= τyx; τyx= τxy; τzx= τxz), представив из (3)

pxx= —p + p′xx, (4)

где p′xx– добавочные нормальные напряжения, которые и зависят от направления воздействия, по

аналогии с формулой (4) получим:


Сделав то же самое для компонентов pyy, pzz, получили систему.

33. Уравнение Бернулли для движения вязкой жидкости

Элементарная струйка при установившемся движении вязкой жидкости

Уравнение для этого случая имеет вид (приводим его без вывода, поскольку его вывод сопряжен с применением некоторых операций, приведение которых усложнило бы текст)


Потеря напора (или удельной энергии) hПp – результат того, что часть энергии превращается из механической в тепловую. Поскольку процесс необратим, то имеет место потеря напора.

Этот процесс называется диссипацией энергии.

Другими словами, hПp можно рассматривать как разность между удельной энергией двух сечений, при движении жидкости от одного к другому происходит потеря напора. Удельная энергия – это энергия, которую содержит единичная масса.

Поток с установившимся плавно изменяющемся движением. Коэффициент удельной кинематической энергии Х

Для того, чтобы получить уравнение Бернулли в этом случае, приходится исходить из уравнения (1), то есть из струйки надо переходить в поток. Но для этого нужно определиться, что представляет собой энергия потока (которая состоит из суммы потенциальной и кинематической энергий) при плавно изменяющемся потоке

Разберемся с потенциальной энергией: при плавном изменении движения, если поток установившийся


Окончательно при рассматриваемом движении давление по живому сечению распределено согласно гидростатическому закону, т. е.

где величину Х называют коэффициентом кинетической энергии, или коэффициентом Кориолиса.

Коэффициент Х всегда больше 1. Из (4) следует:

34. Гидродинамический удар. Гидро– и пьезо– уклоны

В силу плавности движения жидкости для любой точки живого сечения потенциальная энергия Еп = Z + p/ρg. Удельная кинетическая Еk= Xυ2/2g. Поэтому для сечения 1–1 полная удельная энергия

Сумму правой части (1) также называют гидродинамическим напором Н. В случае невязкой жидкости U2= xυ2. Теперь остается учесть потери напора hпр жидкости при ее движении к сечению 2–2 (или 3–3).

Например, для сечения 2–2:

Следует отметить, что условие плавной изменяемости должно быть выполнено только в сечениях 1–1 и 2–2 (только в рассматриваемых): между этими сечениями условие плавной изменяемости необязательно.

В формуле (2) физический смысл всех величин приведен ранее.

В основном все так же, как и в случае с невязкой жидкостью, основная разница в том, что теперь напорная линия Е = Н= Z + p/ρg + Xυ2/2g не параллельна к горизонтальной плоскости сравнения, поскольку имеет места потери напора

Степень потери напора hпр по длине называют гидравлическим уклоном J. Если потеря напора hпр происходит равномерно, то

Числитель в формуле (3) можно рассматривать как приращение напора dH на длине dl.

Поэтому в общем случае

Знак минус перед dH/dl – потому, что изменение напора по его течению отрицательно.

Если рассмотреть изменение пьезометрического напора Z + p/ρg, то величину (4) называют пьезометрическим уклоном.

Напорная линия, она же линия удельной энергии, находится выше пьезометрической линии на высоту u2/2g: здесь то же самое, но только разница между этими линиями теперь равна xυ2/2g. Эта разница сохраняется также при безнапорном движении. Только в этом случае пьезометрическая линия совпадает со свободной поверхностью потока.

35. Уравнение Бернулли для неустановившегося движения вязкой жидкости

Для того, чтобы получить уравнение Бернулли, придется определить его для элементарной струйки при неустановившемся движении вязкой жидкости, а затем распространять его на весь поток

Прежде всего, вспомним основное отличие неустановившегося движения от установившегося. Если в первом случае в любой точке потока местные скорости изменяются по времени, то во втором случае таких изменений нет.

Приводим уравнение Бернулли для элементарной струйки без вывода:

здесь учтено, что υω = Q; ρQ = m; mυ = (КД)υ.

Так же, как и в случае с удельной кинетической энергией, считать (КД)υ не таккто просто. Чтобы считать, нужно связать его с (КД)υ. Для этого служит коэффициент количества движения

Коэффициент a′ принято называть еще и коэффициентом Бусинеска. С учетом a′, средний инерционный напор по живому сечению


Окончательно уравнение Бернулли для потока, получение которого и являлось задачей рассматриваемого вопроса имеет следующий вид:


М. Бабаев читать все книги автора по порядку

М. Бабаев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Гидравлика отзывы

Отзывы читателей о книге Гидравлика, автор: М. Бабаев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.