Тем не менее, сама технология добыча сланцевого газа, на разработку которой американские компании затратили пару десятков лет и миллиарды долларов, остается крайне сложной и дорогостоящей. Сейчас стоимость подготовки одной скважины к эксплуатации оценивается примерно в 5 млн долл. и продолжает постепенно снижаться, что позволяет американским добывающим компаниям поставлять газ на внутренний рынок по беспрецедентно низкой цене порядка 120 долл./1000 м3. Это примерно в два-три раза ниже, чем цена газа в Европе и Японии.
О сложности технологии добычи сланцевого газа свидетельствует рис. 28, демонстрирующий обилие сложнейшей техники, привлекаемой для осуществления гидроразрыва пласта. Пока только американские компании владеют этой технологией, оставаясь в этой области монополистами.
Рис. 28. Подготовка техники к гидроразрыву пласта
2.4.2. Газовые гидраты – главный мировой резерв углеводородного топлива
Важное значение для формирования в земной коре ресурсов природного газа имеет свойство метана и других газообразных углеводородов при высоком давлении и пониженной температуре образовывать с водой газовые гидраты – твердые кристаллические соединения с общей формулой CnH2n+2.mH2O, которые при высоких давлениях существуют и при положительных температурах. По структуре газовые гидраты – это соединения включения (клатраты), образующиеся при внедрении молекул газа в пустоты кристаллических структур, составленных из молекул воды. Существуют два типа решетки гидратов: структура I, построенная из 46 молекул воды и имеющая 8 полостей, и структура II – 136 молекул воды, 16 малых полостей и 8 больших (рис. 29). Молекулы газа-гидратообразователя находятся в полостях решетки, которая может существовать только при наличии этих молекул (Бухгалтер, 1986).
Рис. 29. Полости в структурах газовых гидратов типа I (8М·46Н2О, где М – СН4, С2Н6, СО2, H2S, N2) и типа II (8М·136Н2О, где М – С3Н8, i-С4Н10); модель каркаса из молекул воды с находящейся внутри молекулой метана
Метан, этан, углекислый газ, сероводород и азот образуют гидраты структуры I, при которой формула полностью насыщенного газом гидрата 8M.46H2O, где М – молекула гидратообразователя. Пропан и изобутан образуют гидраты структуры II с идеальной формулой 8M.136H2O. Углеводороды с размерами молекул, большими, чем у изобутана, гидратов не образуют, так как уже не помещаются в полость, образуемую молекулами воды. Один объем воды при образовании гидрата связывает от 70 до 210 объемов газа, при этом удельный объем воды возрастает на 26–32 %. При образовании гидрата метана один объем воды связывает 207 объемов метана. А при разложении 1 м3 гидрата метана при нормальных условиях выделяется 164,6 м3 газа. При этом объем, занимаемый газом в гидрате, не превышает 20 %. Таким образом, в гидратном состоянии 164,6 м3 газа занимают объем всего 0,2 м3 (Макогон, 2001).
Внешне гидраты метана выглядят как лед или плотный снег, а при разложении (таянии) выделяют воду и метан, который можно поджечь (рис. 30). В природных условиях они широко распространены и образуют крупные залежи метанового газа. Например, на океанском дне даже при температуре +10°С уже на глубине 700 м давление достаточно для образования газовых гидратов. Мировые ресурсы газа в газогидратных залежах, сосредоточенных на материках, определяются величиной около 1014 м3. А ресурсы газа, сосредоточенные в гидратном состоянии в акватории Мирового океана, в пределах шельфа и материкового склона – в 1,5 1016 м3 (Макогон, 1985), хотя имеются и более высокие оценки. Энергия, высвобождающаяся при разложении газогидратных залежей, столь велика, что этот процесс может инициировать тектономагматические процессы в литосфере Земли.
Рис. 30. Тающий кусок газового гидрата с горящим пламенем выделяющегося метана
Целый ряд закономерностей в распространении скоплений газовых гидратов, а также изотопно-геохимический облик газогидратных газов и вод свидетельствует о глубинном генезисе углеводородных газов, вошедших в состав газогидратов. Только в случае признания ведущей роли глубинных углеводородных и углеводородно-водных флюидов в формировании скоплений газогидратов главные геологические закономерности их распространения получают непротиворечивое объяснение. Водород и углерод являются основными химическими элементами, поднимающимися из земных глубин к поверхности в процессе постоянно идущей дегазации планеты. Водород диффундирует сквозь толщу земных пород в атомарном и молекулярном виде, а углерод – в химически связанном виде, в составе оксидов углерода СО и СО2. При температуре ниже 600°С эти газы вступают в реакцию, образуя воду и метан (СО + 3Н2 → Н2О + СН4). Вода входит в кристаллическую решетку гидросиликатов, а метан накапливается в виде газовых включений, в т. ч. газовых гидратов.
Мощнейшие скопления газовых гидратов приурочены в основном к краевым частям океанического дна, где продолжается океанообразование и где в современную нам эпоху происходит массовое поступление глубинного метана. Большая часть газовых гидратов обнаружена на дне океанов в молодых отложениях – метан продолжает поступать в гигантских объемах. Той же причиной обусловлено образование нефти и газа на континентах. В геологические эпохи мезозое и кайнозое сформировались осадочные бассейны, ставшие резервуарами углеводородов, где расположено большинство известных месторождений нефти и газа. Разница лишь в том, что на континентах возникшая по той же причине и в тот же отрезок времени, что и океаны, впадина заполнялась осадками, в которых и накапливался метан, впоследствии химическим и биогенным путями преобразованный в нефть и углеводородные газы. Формирование различных типов залежей газовых гидратов схематически представлено на рис. 31.
Рис. 31. Формирование различных типов газогидратных залежей
По некоторым оценкам залегающий в плейстоцен-современных осадках газогидратный слой содержит не менее 11,3 1018 м3 или 8,5 1015 т метанового углерода. В то же время запасы некарбонатного углерода в морской биоте определяются в 3 млрд т; в атмосфере – 3,6; детритном органическом веществе – 60; торфе – 500; биоте суши – 830; органическом веществе, растворенном в воде, – 980; почве – 1400; извлекаемых и неизвлекаемых ископаемых топливах (нефть, природный газ, уголь) – 5000 млрд т, т. е. в сумме – 8,8 трлн т. Это на три порядка меньше приведенной выше оценки содержания в земной коре гидратного метана.
Другие источники не разделяют столь высоких значений гидратоносности, оценивая их ресурсы в 2 1016 м3. Тем не менее и по этой оценке более половины органического углерода в земной коре, видимо, содержится в составе газовых гидратов, что вдвое превышает все разведанные и неразведанные ресурсы нефти, угля и газа, вместе взятые (рис. 32). Особенно интересно, что эти гигантские скопления метана содержатся в плейстоцен-современных отложениях, образовавшихся в последние пять миллионов лет. Это значит, что образовавший их метан выделился за время, составляющее одну тысячную всей истории планеты.
Рис. 32. Распределение органического углерода на Земле (1015 г)
В настоящее время имеются сведения о более чем 100 выявленных газогидратных залежах, а потенциальные мировые запасы газа в гидратном состоянии, по оценкам специалистов, превышают 16 1012 тнэ (тонн нефтяного эквивалента). Около 98 % ресурсов газогидратов сосредоточено в акваториях Мирового океана на глубинах более 200–700 м, в придонных осадках толщиной до 400–800 м и более, и только 2 % – в приполярных частях материков. Однако и последний факт заслуживает серьезного внимания, поскольку это соответствуют 300 трлн м3 газа, что в полтора раза превышает мировые разведанные запасы природного газа. Например, при современном уровне потребления выявленные запасы газа в гидратном состоянии в США могут обеспечить потребности страны в природном газе в течение 104 лет.
Разработка природных газогидратов – одна из наиболее промышленно значимых альтернатив разработке традиционных месторождений природного газа. Все большее число стран, включая США, Канаду, Индию, Китай, Японию, принимает национальные, хорошо финансируемые программы по исследованиям газогидратов и поискам их скоплений. Их оптимизм базируется на том, что уже при небольших масштабах выполненных геофизических и буровых работ открыты гигантские скопления газогидратов и газогитратные провинции. Удельная плотность метана в гидратоносных акваториях не уступает средней плотности в обычных месторождениях газа. Однако остаются сложности с созданием в обозримом будущем технологий, по которым извлечение метана из газогидратов станет не просто возможным, но и рентабельным.